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ABSTRACT

Context. Large-scale magnetic fields resulting from hydromagnetic dynamo action may differ substantially in their time dependence.
Cyclic field variations, characteristic for the solar magnetic field, are often explained by an important Ω-effect, i.e., by the stretching
of field lines because of strong differential rotation.
Aims. The dynamo mechanism of a convective, oscillatory dynamo model is investigated.
Methods. We solve the MHD-equations for a conducting Boussinesq fluid in a rotating spherical shell. We computed the dynamo
coefficients for the resulting oscillatory model with the help of the so-called test-field method. Subsequently, these coefficients were
used in a mean-field calculation to explore the underlying dynamo mechanism.
Results. The oscillatory dynamo model we consider is an α2Ω one. Although the fairly strong differential rotation of this model
influences the magnetic field, the Ω-effect alone is not responsible for its cyclic time variation. If the Ω-effect is suppressed, the
resulting α2-dynamo remains oscillatory. Surprisingly, the corresponding αΩ-dynamo leads to a non-oscillatory magnetic field.
Conclusions. The assumption of an αΩ-mechanism does not explain the occurrence of magnetic cycles satisfactorily.
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1. Introduction

The study of the solar cycle has motivated dynamo theory for
many decades. Hence, the solar dynamo has become the pro-
totype of oscillatory dynamos. However, its explanation is still
controversial (Jones et al. 2010). Most solar dynamo models
have been built on the assumption of an αΩ-dynamo mechanism
(Ossendrijver 2003); that is, the poloidal field results from the
interaction of helical turbulence with the toroidal field (α-effect)
whereas the toroidal field is thought to originate in the shearing
of poloidal field lines by strong differential rotation (Ω-effect).
This attempt is attractive for mainly two reasons:

– First, the existence of a strong shear layer at the bottom of the
solar convection zone is observationally well established and
the importance of a resulting Ω-effect is non-controversial.

– Second, Parker’s plane layer model (Parker 1955) and in par-
ticular mean-field electrodynamics (Steenbeck et al. 1966)
provide a very elegant theoretical framework for this ap-
proach. Within the mean-field theory, attention is focused
on large-scale, i.e. averaged fields, only, and the induction
equation may be replaced by a mean-field dynamo equation
(Krause & Rädler 1980)

∂B
∂t
= ∇ ×

(
E + V × B − η∇ × B

)
, (1)

in which B and V denote the average magnetic and the average
velocity field, η stands for the magnetic diffusivity and E is the
mean electromotive force. Moreover, it is assumed that E is
homogeneous in the mean magnetic field and may be replaced
by a parameterisation in terms of B and its first derivatives

E = aB + b∇B . (2)

In Eq. (2), the so-called dynamo coefficients a and b are ten-
sors of second and third rank, respectively, and depend only
on the velocity field and the magnetic diffusivity. The tradi-
tional α-effect implemented in a large number of solar dynamo
models (e.g. Steenbeck & Krause 1969; Roberts 1972; Roberts
& Stix 1972; Stix 1976; Ossendrijver 2003; Brandenburg &
Subramanian 2005; Chan et al. 2008) corresponds to the
isotropic component of a in relation (2), while the Ω-effect re-
sults from the φ-component of the ∇ × (V × B) term in Eq. (1).

However, a strong differential rotation is not a necessary con-
dition for oscillatory solutions of the dynamo Eq. (1), as has
been demonstrated in several papers (see e.g. Rädler & Bräuer
1987; Baryshnikova & Shukurov 1987; Schubert & Zhang 2000;
Rüdiger et al. 2003; Stefani & Gerbeth 2003). These papers pre-
sented models in which the toroidal field is likewise generated
from the poloidal field by an α-effect (α2-models) and investi-
gated necessary constraints on a, the boundary conditions for the
magnetic field, and the geometry of the dynamo region to obtain
oscillatory solutions of Eq. (1). Recently, oscillatory dynamo
models have also been investigated by means of direct numer-
ical simulations. Mitra et al. (2010) performed dynamo simula-
tions in a wedge-shaped spherical shell with an applied forcing
and demonstrated again the existence of oscillatory α2-dynamo
models.

However, the success of mean-field models in reproducing
solar-like variations of the magnetic field relies partly on the
large number of free parameters, i.e. on the arbitrary determina-
tion of the dynamo coefficients a and b. An alternative approach
is presented by Pétrélis et al. (2009). They construct amplitude
equations guided from symmetry considerations and analyse po-
larity reversals and oscillatons of the magnetic field resulting
from the interaction between two dynamo modes.

Self-consistent, global, convective dynamo models with
cyclic magnetic field variations have been first reported by

Article published by EDP Sciences A140, page 1 of 6

http://dx.doi.org/10.1051/0004-6361/201016372
http://www.aanda.org
http://www.edpsciences.org


A&A 530, A140 (2011)

Gilman (1983) and Glatzmaier (1985). More recent examples
have been published by Busse & Simitev (2006), and Goudard
& Dormy (2008). Convective dynamo simulations with stress-
free mechanical boundary conditions (Busse & Simitev 2006)
exhibit a strong and a weak field branch, depending on the initial
conditions for the magnetic field. If the magnetic field is initially
weak, stress free boundary conditions enable the development
of a strong zonal flow carrying most of the kinetic energy. The
magnetic field resulting from these dynamos is somewhat small-
scaled, often of quadrupolar symmetry and weak. Oscillatory
solutions of the induction equation are typical for this dynamo
branch.

A transition from steady to oscillatory dynamos may also
be governed by the width of the convection zone; Goudard &
Dormy (2008) found oscillatory models by decreasing the shell
width. In this study, we follow their approach and analyse the dy-
namo mechanism for these oscillatory models. In particular, we
address the question whether an Ω-effect is responsible for the
cyclic variation of the magnetic field. Different from previous
work, we determine the dynamo coefficients a and b from di-
rect numerical simulations with the help of the test-field method
(Schrinner et al. 2005, 2007). The application of a and b in a
mean-field calculation reveals their importance for the genera-
tion of the magnetic field.

2. Dynamo calculations

We consider a conducting Boussinesq fluid in a rotating spheri-
cal shell and solve the equations of magnetohydrodynamics for
the velocity u, magnetic field B and temperature T as given by
Goudard & Dormy (2008) with the help of the code PaRoDy
(Dormy et al. 1998, and further developments),

E

(
∂u

∂t
+ u · ∇u − ∇2u

)
+ 2z × u + ∇P =

Ra
r
ro

T +
1

Pm
(∇ × B) × B, (3)

∂B
∂t
= ∇ × (u × B) +

1
Pm
∇2 B, (4)

∂T
∂t
+ (u · ∇)(T + Ts) =

1
Pr
∇2T. (5)

Governing parameters are the Ekman number E = ν/ΩL2, the
(modified) Rayleigh number Ra = αTg0ΔT L/νΩ, the Prandtl
number Pr = ν/κ and the magnetic Prandtl number Pm = ν/η.
In these expressions, ν denotes the kinematic viscosity, Ω the
rotation rate, L the shell width, αT the thermal expansion coef-
ficient, g0 is the gravitational acceleration at the outer boundary,
ΔT stands for the temperature difference between the spherical
boundaries, κ is the thermal and η = 1/μσ the magnetic diffusiv-
ity with the magnetic permeability μ and the electrical conduc-
tivity σ. Furthermore, the aspect ratio is defined as the ratio of
the inner to the outer shell radius, ri/ro; it determines the shell
width.

In our models, convection is driven by an imposed tempera-
ture gradient between the inner and the outer shell boundary, at
which the temperature is fixed. The mechanical boundary condi-
tions are no slip at the inner and stress free at the outer boundary.
Moreover, the magnetic field is assumed to continue as a poten-
tial field outside the fluid shell.

Time-averaged dynamo coefficients for an axisymmetric
mean magnetic field were determined from direct numerical sim-
ulations as described in detail by Schrinner et al. (2007) and

as recently discussed for time-dependent dynamo models by
Schrinner (2011). Some of them are displayed in Appendix A.
In a second step, these coefficients were applied in a mean-field
model based on Eq. (1) written as an eigenvalue problem,

σB = ∇ × DB. (6)

Mean fields here are axisymmetric fields and the linear opera-
tor D is defined as

DB = V × B + aB + b∇B − 1
Pm
∇ × B. (7)

The time evolution of each mode is determined by its eigenvalue
σ and proportional to exp (σt). For more details concerning the
eigenvalue calculation, we refer to Schrinner et al. (2010b).

We also consider the evolution of a kinematically advanced
magnetic field, BTr, governed by a second induction equation

∂BTr

∂t
= ∇ × (u × BTr) +

1
Pm
∇2BTr . (8)

The tracer field BTr experiences the self-consistent velocity field
at each time step but does not contribute to the Lorentz force
and is passive in this sense (see also Schrinner et al. 2010a). Its
evolution will be compared with mean-field results originating
likewise from a kinematic approach. Moreover, a kinematically
advanced tracer field allows us to test for the influence of the
Ω-effect in direct numerical simulations. In a numerical experi-
ment, we subtract the contribution of the Ω-effect and the mean
meridional flow in the equation for the tracer field,

∂BTr

∂t
= ∇ × (u × BTr) +

1
Pm
∇2BTr − ∇ ×

(
V × BTr

)
, (9)

and study in this way the outcome of a kinematic α2-dynamo.

3. Results

The model under consideration has been previously studied by
Goudard & Dormy (2008). It is defined by E = 10−3, Ra =
100 (=2.8 Rac), Pm = 5, Pr = 1 and an aspect ratio of 0.65.
Except for the stress-free mechanical boundary condition ap-
plied at r = ro and an increased aspect ratio, the governing
parameters are those of a fairly simple, quasi-steady bench-
mark dynamo (Christensen et al. 2001). However, Goudard &
Dormy (2008) report a transition from steady, dipolar to oscil-
latory models for these parameter values. Note that the model
requires a very high angular resolution up to harmonic degree
lmax = 112.

Figure 1 displays the radial component of the velocity field
at a given radial level. A typical columnar convection pattern
is visible, even though the convection columns are noticeably
disturbed by the influence of the curved boundaries and a strong
zonal flow carrying about 50 percent of the kinetic energy. The
magnetic Reynolds number based on the rms-velocity and the
shell width, Rm = vrms L/η, is about 90. The flow is symmetric
with respect to the equatorial plane and convection takes place
only outside the inner core tangent cylinder.

The evolution of the magnetic field is cyclic. In Fig. 2 (top)
we plot the contours of the azimuthally averaged radial mag-
netic field at the outer shell boundary varying with time in a so-
called butterfly diagram. A dynamo wave migrates away from
the equator until it reaches mid-latitudes where the inner core
tangent cylinder intersects the outer shell boundary. The mag-
netic field looks very small-scaled and multipolar. This is con-
firmed by the magnetic energy spectrum which is essentially
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Fig. 1. Snapshot of the radial velocity of the considered dynamo model
at r = 0.79 ro. The velocity component was normalised by its maximum
absolute value, ur,max = 24.46 ν/L. Hence, the colour–coding ranges
from −1, white, to +1, black. Contour lines correspond to ±0.2 and
±0.6.

white, except for a negligible dipole contribution. Furthermore,
the magnetic field is weak, as expressed by an Elsasser number
of Λ = B2

rms/(μρηΩ) = 0.13. This corresponds to a field strength
of about 30% of its equipartition value Beq =

√
EPm urms.

The kinematically advanced tracer field grows slowly in
time, i.e., the model under consideration is kinematically unsta-
ble according to the classification by Schrinner et al. (2010a).
But deviations of the tracer field from the actual field are hardly
noticeable in the field morphology. Moreover, the very same
dynamo wave persists in the kinematic calculation (see also
Goudard & Dormy 2008), as visible in Fig. 2 (middle). Note
that the tracer field in Fig. 2 has evolved from random initial
conditions.

A mean-field calculation based on the dynamo coeffi-
cients a, b and the mean flow V determined from the self-
consistent model is presented in the bottom line of Fig. 2. The
fastest growing eigenmodes form a conjugate complex pair and
give rise to a dynamo wave that nicely compares with the direct
numerical simulations. Because this model depends on the full
a-tensor and the mean flow, we refer to it as an α2Ω-dynamo.

The influence of the differential rotation may be suppressed
in the kinematic calculation of the tracer field without changing
any other component of the flow. A butterfly diagram resulting
from a kinematically advanced field according to Eq. (9) is pre-
sented in Fig. 3 (top). The evolution of the magnetic field is again
cyclic. Apart from small-scale variations on shorter time scales,
a dynamo wave migrates from mid-latitudes towards the equa-
tor. This agrees with a corresponding mean-field calculation in
which the mean flow V in (7) has been canceled: the bottom
chart of Fig. 3 provides the butterfly diagram stemming from the
fastest growing eigenmodes of the resulting α2-dynamo. An ex-
planation for the reason why direct numerical simulations and
mean-field calculations compare somewhat better in Fig. 2 than
in Fig. 3 is provided in Appendix B. The fairly regular oscilla-
tions at mid latitudes in the top panel of Fig. 3 are not captured
by the time-averaged mean-field coefficients. Their origin is not
well understood.

The time evolution of the related αΩ-dynamo is of further
interest. Because the α-effect is not directly accessible in direct
numerical simulations, the corresponding αΩ-dynamo can only
be realised in a mean-field calculation. In a first attempt, we set
arr = aθθ = 0 to suppress the generation of a toroidal field from
the poloidal field by an α-effect. Both components make major
contributions to this process. The leading eigenmode resulting
from this calculation is shown in Fig. 4; it is real, i.e., non-
oscillatory, and close to marginal stability. The results remain
similar if we neglect other, off-diagonal components of a.

Fig. 2. Azimuthally averaged radial magnetic field at the outer shell
boundary varying with time (butterfly diagram) resulting from a self-
consistent calculation (top), kinematic calculation according to (8)
(middle) and mean-field calculation (bottom). The contour plots were
normalised by their maximum absolute value at each time step consid-
ered. The colour–coding ranges from −1, white, to +1, black.

4. Discussion

The frequency and the propagation direction of the dynamo
wave visible in Fig. 2 strongly depend on the differential rota-
tion, in agreement with Busse & Simitev (2006). We follow their
approach and give an estimate for the cycle frequency by apply-
ing Parker’s plane layer formalism (Parker 1955). To this end,
we introduce a cartesian coordinate system (x, y, z) correspond-
ing to the (φ, θ, r) directions and define mean quantities to be x-
independent. Moreover, we write B = Bex +Bp = Bex +∇×Aex
and reformulate (1) in the following simplified manner

∂A
∂t
= αxxB +

1
Pm
∇2A , (10)

∂B
∂t
= − ∂
∂y

(
αzz
∂A
∂y

)
+

dVx

dz
∂A
∂y
+

1
Pm
∇2B. (11)
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Fig. 3. Azimuthally averaged radial magnetic field at the outer shell
boundary varying with time (butterfly diagram) resulting from a kine-
matic calculation with subtracted Ω-effect (top) and a corresponding
mean-field calculation (bottom). The contour plots are presented as in
Fig. 2.

In the above equations, we considered only the dominant di-
agonal components of a, arr and aφφ corresponding to αzz and
αxx; all components of b and the mean meridional flow were ne-
glected. Furthermore, V was assumed to depend only on z. Then,
the ansatz

(A, B) = (Â, B̂) exp(i(kyy + kzz) + σt), (12)

leads to

pÂ = αxxB̂, (13)

pB̂ =

⎛⎜⎜⎜⎜⎝αzz k2
y + iky

⎛⎜⎜⎜⎜⎝dVx

dz
− ∂αzz

∂y

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ Â, (14)

with p = σ + |k|2/Pm. From (13), (14), we derive a dispersion
relation

p2 = αxx

⎛⎜⎜⎜⎜⎝αzz k2
y + iky

⎛⎜⎜⎜⎜⎝dVx

dz
− ∂αzz

∂y

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ , (15)

from which real and imaginary parts of σ can be calculated. If
αxx is positive (e.g. in the northern hemisphere), it follows

λ = �(σ) = −|k|2/Pm

+

√
αxx

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√

(αzz k2
y)2 +

⎛⎜⎜⎜⎜⎝dVx

dz
− ∂αzz

∂y

⎞⎟⎟⎟⎟⎠2

k2
y + αzz k2

y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/2

(16)

Fig. 4. Leading dipolar eigenmode resulting from a mean-field calcula-
tion with arr = aθθ = 0. Contour plots of all three components are pre-
sented, each normalised separately by their maximum absolute values.
Maxima and minima are written next to each plot. The colour–coding
ranges from −1, white, to +1, black, and contour lines correspond to
±0.1, ±0.3, ±0.5, ±0.7 and ±0.9.

and

ω = �(σ)

= ±
√
αxx

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√

(αzz k2
y)2 +

⎛⎜⎜⎜⎜⎝dVx

dz
− ∂αzz

∂y

⎞⎟⎟⎟⎟⎠2

k2
y − αzz k2

y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/2

. (17)

The sign in (17) is determined by the sign of ky(dVx/dz −
∂αzz/∂y). If we further assume that the frequency is dominated
by differential rotation and neglect the α-terms in (17), we esti-
mate similar to Busse & Simitev (2006)

ω = �(σ) ≈ ±
(
π

L2
αxx

√
2ET

)1/2

. (18)

In (18), ET denotes the the kinetic energy density from the ax-
isymmetric toroidal velocity field and ky ≈ 2π/L was used.
Approximating αxx by the rms-value of aφφ, αxx = 12 ν/L, and
with ET = 71 ν2/L2, we find ω ≈ ±106 η/L2 which is surpris-
ingly close to ω = ±101η/L2 in the full calculation presented in
Fig. 2. Note that αxx and dVx/dz are of the same order of magni-
tude and contribute equally to ω. The sign in (18) is determined
by the sign of the product aφφ ∂Vφ/∂r, which is positive in the
northern and negative in the southern hemisphere. Therefore, our
estimate in (18) predicts a dynamo wave migrating away from
the equator. This agrees with the simulations shown in Fig. 2.

However, the attempt to describe the model under consider-
ation as an αΩ-dynamo fails. An oscillatory mode with a fre-
quency close to the above estimate turns out to be clearly sub-
critical in a mean-field calcuation, if arr and aθθ are omitted.
Instead, this model is governed by a real, dipolar mode close to
marginal stability (see Fig. 4). Hence, the Ω-effect is only partly
responsible for the generation of the mean azimuthal field, as
confirmed by Fig. 5. The middle panel compares the Ω-effect,
rBr ∂(r−1Vφ)/∂r+ r−1 sin θ Bθ ∂(sin θ−1Vφ)/∂θ in greyscale with
the mean azimuthal field displayed by superimposed contour
lines. In particular, the elongated flux patches close to the inner
core tangent cylinder are, if at all, negatively correlated with the
Ω-effect. Consistent with this finding, the poloidal axisymmetric
magnetic energy density exceeds the toroidal one by 20%.
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Fig. 5. Left: ∂Vφ/∂r in units of ν/L2. Middle: Ω-effect as given by
rBr ∂(r−1Vφ)/∂r + r−1 sin θ Bθ ∂(sin θ−1Vφ)/∂θ (greyscale) and Bφ (su-
perimposed contour lines, solid [dashed] lines indicate positive [nega-
tive] values). Right: (1/r) ∂arr/∂θ in units of ν/L2. Otherwise, the con-
tour plots are presented in the same style as in Fig. 4.

Differential rotation alone is not responsible for the cyclic
time evolution of the magnetic field, despite its influence on the
frequency and the propagation direction of the dynamo wave.
This is most clearly visible in Fig. 3. Simulations without differ-
ential rotation still lead to a dynamo wave even though its fre-
quency and propagation direction have changed. In the frame-
work of Parker’s plane layer formalism, the frequency of this
oscillatory α2-dynamo crucially depends on −∂αzz/∂y instead of
dVx/dz. Note the additional minus sign, which might explain
the reversed propagation direction if the assume that ∂αzz/∂y is
predominantly positive. But different from the radial derivative
of the mean azimuthal flow, (1/r) ∂arr/∂θ is highly structured,
changes sign in radial direction and exhibits localised patches of
low negative values (see Fig. 5). Therefore, we do not attempt to
give an estimate for the frequency similar to (18).

In order to better understand the influence of the mean flow
on the frequency of the dynamo wave, we gradually changed
the amplitude of V in a series of kinematic calculations. Results
are presented in Fig. 6. Stars denote frequencies obtained from
eigenvalue calculations according to (6), whereas triangles stand
for frequencies estimated from kinematic results from Eq. (8).
In both cases, the amplitude of the mean flow V was varied by
multiplication with a scale factor f . For f = 1, the original calcu-
lation is retained, while for f = 0, we reproduce the α2-dynamo
already discussed above. Frequencies of dynamo waves resulting
from direct numerical simulations according to (8) were meas-
sured for f = 1, 0.7, and 0.5. Owing to the turbulence present
in the simulations, these are very rough estimates and error bars
have been included. Nevertheless, the results obtained satisfac-
torily agree with the eigenvalue calculations. The frequencies in
Fig. 6 decrease continously with decreasing scale factors. If the
amplitude of V is reduced to 25 percent of its original value, ω
changes sign and the propagation direction of the dynamo wave
is reversed. The dashed-dotted line in Fig. 6 gives ω according
to (18) as predicted for an αω-dynamo. It matches the numer-
ical results if dV/dz dominates in (17) but clearly deviates for
smaller amplitudes. On the other hand, it is illustrative to use re-
lation (17) to model the dependence of ω on the mean flow. If we
set ∂αzz/dy = 0.25 dV/dz and determine a representative value
for αzz inverting (17) for dV/dz = 0 and ω = −29.15η/L2, the
dashed line in Fig. 6 results from (17). It fits the numerical data

Fig. 6. Frequencies resulting from kinematic calculations in which the
amplitude of the mean flow was changed by multiplication with a scale
factor, f . Stars denote frequencies stemming from an eigenvalue calcu-
lation according to (6), whereas triangles are estimates obtained from
kinematic results from (8). The dashed-dotted line gives frequencies as
predicted for an αω-dynamo by (18), while the dashed line represents
ω as a function of V for an α2ω-dynamo according to (17).

quite well and converges towards the frequencies predicted for
an αω-dynamo if the amplitude of V is sufficiently high.

Let us stress again that some caution is needed in apply-
ing the present mean-field analysis to non-linear direct numer-
ical simulations, because the dynamo model considered here is
kinematically unstable. Strictly speaking, our mean-field results
are only relevant for the kinematically advanced tracer field. But
because the model is close to dynamo onset and only weakly
non-linear, we believe that our interpretation is also valid for the
fully self-consistent field. This is in particular confirmed by the
fairly good agreement of the three butterfly diagrams presented
in Fig. 2.

5. Conclusions

A particular dynamo mechanism does not seem to be responsi-
ble for the occurrence of periodically time-dependent magnetic
fields. It turns out that the influence of the large-scale radial
shear (the Ω-effect) is not necessary for cyclic field variations.
Instead, the action of small-scale convection, represented by a
spatially structured dynamo coefficient arr, turns out to be es-
sential. For the model presented here, small convective length
scales are forced by a thin convection zone. Additional investi-
gations are needed to assess whether our finding is representative
for a wider class of oscillatory models.

Acknowledgements. M.S. is grateful for financial support from the ANR Magnet
project. The computations were carried out at the French national computing
center CINES.

Appendix A: Dynamo coefficients

Figure A.1 displays some of the dynamo coefficients derived
from the oscillatory dynamo model considered here. Referring
to the traditional representation of the mean electromotive force
(e.g. Rädler 1980, 2000),

E = −α·B−γ×B−β·
(
∇ × B

)
−δ×

(
∇ × B

)
−κ ·

(
∇B

)(sym)
, (A.1)

the diagonal components of the α-tensor and those of the the
mean-field diffusivity tensor, Dκλ = ηδκλ + βκλ, are presented.
The weak negative contributions of Drr are negligible in the
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Fig. A.1. Contour plots of the diagonal components of the α-tensor in
units of η/L and of the mean-field diffusivity tensor in units of η for the
oscillatory dynamo model. The contour plots are presented in the same
style as in Fig. 4.

mean-field calculations. The dynamo coefficients a and b intro-
duced in Eq. (2) are related to α and β via

ακλ = −1/2 (aκλ + aλκ) (A.2)

βκλ = 1/4
(
εκμνbλμν + ελμνbκμν

)
. (A.3)

Appendix B: The use of time averaged-dynamo
coefficients

In the following, azimuthal averages are, as throughout in the
paper, denoted by an overbar, time averages are expressed by
brackets, 〈. . .〉. Initially, dynamo coefficients were determined
for an azimuthally averaged, mean magnetic field B. Hence, the
evolution of the latter is given by

∂B
∂t
= ∇ ×

(
aB + b∇B + V × B − 1

Pm
∇ × B

)
. (B.1)

But the dynamo coefficients a, b and the mean flow V vary
stochastically in time. In order to describe the average dynamo

action, we take in addition the time average of these quantities
and write approximately

∂B
∂t
≈ ∇ ×

(
〈a〉B + 〈b〉∇B + 〈V〉 × B − 1

Pm
∇ × B

)
. (B.2)

We emphasise that there is no a priori relation between the left
hand side and the right hand side of Eq. (B.2). The more a, b,
and V fluctuate in time, the stronger the actual, azimuthally av-
eraged magnetic field will deviate from our mean-field descrip-
tion. Among these three quantities, the mean flow V is almost
time-independent, whereas a and b vary considerably. This is
the reason why the butterfly diagrams in Fig. 2 agrees better than
in Fig. 3, where the stabilizing influence of the mean flow was
omitted.
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