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We have shown that a simple, modified version of the Magnetorotational Instability (MRI)
can, in principle, develop in the Earth’s outer liquid core in the presence of a background shear
(see Petitdemange, Dormy and Balbus, MagnetoStrophic MRI in the Earth’s outer core.
Geophys. Res. Lett. 2008, 35 15305). We refer to this instability as the Magnetostrophic MRI
(MS-MRI). In this article, we extend our investigations to the nonlinear regime and present
results from global axisymmetric simulations in spherical geometry. We show that as the
angular momentum is transported outward, the MS-MRI saturates by rapidly changing the
initial shear profile. Therefore, the saturation process differs substantially from traditional
MRI applications (e.g. accretion disks) in which the background shear is essentially fixed.
We show that the MS-MRI appears as a new constraint which limits the maximum differential
rotation. To illustrate this mechanism, we apply this work to a Jupiter-like planet, and argue
that the magnetic field eventually destabilises the conducting zone of this planet. According to
these results, purely hydrodynamic models for the deep origin of the banded structure of Jupiter
may need to be modified.

Keywords: MHD instability; MRI; Planetary interiors; Saturation

1. Introduction

The Magnetorotational Instability (MRI) is known to trigger the turbulence in
sufficiently ionised accretion disks. The instability was first noted by Velikhov (1959)
and Chandrasekhar (1961). Then, Balbus and Hawley (1991) understood its importance
for astrophysics (see Balbus and Hawley (1998) for a useful review). Later, it was also
confirmed numerically by Hawley et al. (1995, 1996; henceforth HGB), Brandenburg
et al. (1995) and Matsumoto et al. (1996). Application of the MRI to planetary interiors
has been introduced by Petitdemange et al. (2008; henceforth PDB08). In this context,
the following differences compared to traditional accretion disk simulations occur: first,
differential rotation is much weaker than in accretion disks; second, the shear profile
can change in time whereas it is assumed to be fixed in Keplerian disks in which the
shear is imposed by the gravitational potential of the massive central object and
third, planetary interiors are known to be strongly affected by magnetic resistivity.
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Planets are in rapid rotation and the Coriolis force strongly affects their interior
dynamics (Proudman 1956). Consequently, these systems can be studied in the
magnetostrophic (MS) regime. PDB08 performed a linear stability analysis of shear
layers in rapidly rotating spherical shells affected by a vertical magnetic field. This
model was designed to be very simple, with no thermodynamics. However, there was a
shear profile driven by an imposed super-rotation of the inner core. With the WKB
method and direct numerical simulations, PDB08 showed that a slightly modified
version of the MRI, the so-called Magnetostrophic MRI (MS-MRI) can take place for
the parameter regime relevant to the Earth’s outer core. The growth time of this
instability is directly proportional to the differential rotation.

In this article, we consider the same model as PDB08. It is assumed that convective
motions induce a zonal shear, which in turn allows the development of the MS-MRI.
Here, we focus on the nonlinear saturation of the MS-MRI in order to better
understand its physical significance. In particular, we show by means of direct
numerical simulations using the PARODY code (Dormy et al. 1998 and later
collaborative developments) that saturation is a consequence of modifications in the
rotation profile. When nonlinearities start to play an important role, the angular
velocity becomes constant on cylinders. The rate of shear decreases with time until it
reaches a limit which depends on the dimensionless parameters applied.

The plan of this article is as follows. In section 2, we explore the nonlinear evolution
of the MS-MRI as it occurs in the Spherical Couette Flow. In section 3, we remove the
inner core effects and apply a background velocity field U0(s)e�. In section 3.1, we
present the method and list all parameters. In section 3.2 we investigate the first stage of
the saturation phase. Section 3.3 is devoted to the final saturated state, from which
we propose the existence of a maximal shear allowed by the MS-MRI. In section 4,
we present a tentative application to the banded structure of Jupiter, and we conclude in
section 5.

2. Nonlinear evolution of the MS-MRI occurring in the spherical Couette flow

2.1. Equations

As an initial velocity field, we consider the linear steady MHD solution of the Spherical
Couette Flow problem. Let the rotation rate of the inner sphere of radius ri¼ 0.35ro be
denoted by �i and that of the outer sphere by �0 with (�i��0)/�0� 1 (see also
PDB08). A purely vertical and uniform magnetic field B0 is imposed and �i and �0 are
kept fixed during the simulation. For the subsequent evolution of our initial velocity
field, we solve the full nonlinear MHD equations

@u

@t
þ u � ru ¼ Er2u� 2ez � u� r�þ

�E

Pm
ðr � bÞ � ðB0 þ bÞ; ð1Þ

@b

@t
¼

E

Pm
r2bþ r � u� ðbþ B0Þ½ �; ð2Þ

r � b ¼ 0; r � u ¼ 0; ð3Þ

in which we have introduced the dimensionless parameters

E ¼
�

�0r2o
; � ¼

B2
0

����0
and Pm ¼

�

�
; ð4Þ
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namely the Ekman number, the Elsasser number and the magnetic Prandtl number,

respectively. Here, ro is the radius of the outer sphere used as a fundamental length scale

and time is scaled by ��¼ 1/�0 with �0 being the global rotation rate of the system; B0

is the characteristic scale for the magnetic field and is set to |B0|; �, �, � and � are the

viscosity, the magnetic diffusivity, the permeability and the constant density of the fluid,

respectively. The conductivities for the solid inner core and the fluid are the same,

whereas the outer sphere is assumed to be insulating. We apply no-slip mechanical

boundary conditions.

2.2. Results

In this article, we present results for one example with E¼ 10�6, Pm¼ 0.5, �¼ 1 and

(�i��0)/�0. We define the growth rate as 	(t)¼ (db2/dt)/b2, where b2¼ |b|2. Note that

	 depends here on time, as we consider nonlinear problems. We find that the MS-MRI

develops linearly at the beginning of the simulation, as predicted by PDB08. But, later

on, the growth rate decreases with time (figure 1) because differential rotation is

diminished by nonlinear effects. Hence the growth rate also decreases and is

approximately proportional to differential rotation as already predicted by linear

theory. Nevertheless, the induced magnetic energy can be amplified by the instability by

several orders of magnitude compared to its initial value. The full spherical non-linear

simulations did not reveal any unexpected behaviour, and produced a saturation
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Figure 1. Nonlinear evolution of the kinetic and magnetic energies with time. The straight line represents the
growth rate associated with the linear phase, it is given here as a reference. Its slope was obtained by solving
the linearised MHD equations, as described in PDB08. The solid curve is the magnetic energy and the dashed
curve is the total kinetic energy (i.e. in which the energy of the initial velocity field is included).
The controlling parameters are E¼ 10�6, (�i��0)/�0¼ 0.005, Pm¼ 0.5 and �¼ 1.
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mechanism comparable to the one described by the local study (through a modification

of the shear).
Let us focus on the onset of the nonlinear effects. The differential rotation is caused

by a moderate super-rotation of the inner sphere. The effect of the nonlinear terms is to

slow down the flow inside the tangent cylinder, whereas, the rest of the flow is

accelerated (figure 2). But, the rotation rate of the inner core is kept fixed causing a

vertical shear close to the inner boundary, which distorts the applied vertical magnetic

field. This effect gives rise to a dominant toroidal magnetic field (figure 3 ). This process

develops rapidly, as soon as the nonlinearities become important. In addition, the radial

shear which was initially regularly distributed along the tangent cylinder now decreases

less rapidly near the inner sphere. As a result, the growth rate near the equatorial plane

becomes stronger than in the rest of the fluid (figure 4).

Figure 2. Evolution of the angular velocity changed by the nonlinear MS-MRI. From the left to right,
the time corresponds to t¼ 0, t¼ 2000 and t¼ 5000. The initial shear layer is progressively smoothed out.
The parameters are the same as in figure 1.

Figure 3. Evolution of the induced azimuthal magnetic field. As a reference, on the left, we present a result
from a linear simulation (PDB08). The time corresponds to t¼ 2000 (on the centre) and t¼ 5000 (on the
right). For this simulation, the parameters are E¼ 10�6, Pm¼ 0.5, (�i��0)/�0¼ 0.005 and �¼ 1.
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After the linear phase, the growth of the MS-MRI mode reduces. As a result, the
fluid inside the tangent cylinder can re-accelerate through the action of the
Lorentz force. This is the reason why the vertical shear progressively moves away
from the inner sphere towards the poles (figure 4). A global toroidal magnetic field,
negative in the northern hemisphere and positive in the southern hemisphere,
is induced. Consequently, when the stationary state is reached, only a very smooth
radial shear is present, i.e. the angular velocity decreases almost linearly from the
tangent cylinder to the outer sphere. Furthermore, the flow is strongly geostrophic
(figure 5). The magnetic field is stretched in the cylindrical radial direction. The
instability expands until it occupies the entire sphere (figure 4).

The results presented in this section strongly depend on the imposed super-rotation
of the inner core. In order to analyse the instability in a simpler (and probably more
generic) set-up, we suppress the effects of the inner core in the following sections by
considering an imposed velocity field instead.

3. Modification of the shear profile

3.1. Method

The size of the inner sphere ri is reduced so that it does not influence the instability.
We again consider the nonlinear MHD equations presented in the previous section,
but now with an additional velocity component U0 entering in the inertia term and the
induction equation. The velocity field u is replaced with U0þ u0 and we solve
numerically the MHD equations for u0. The applied velocity field U0 is defined as

U0ðsÞ ¼ A exp �
ðs� 0:5Þ2

0:015

� �
e�: ð5Þ

Maintaining this flow, U0, for all time (but allowing for the full nonlinear development
of u) is physically equivalent to applying a distributed body force in the fluid, which
drives the flow U0 through the Stokes balance.

The parameterA controls themagnitude of the applied flow. Such an imposed flow has
several advantages compared to the configuration studied in the previous section. There,
the shear caused by the super-rotating core varies sharply in a localised Stewartson layer

Figure 4. Evolution of the angular velocity changed by the nonlinear MS-MRI. From left to right, the time
corresponds to t¼ 7000, t¼ 14,000 and t¼ 17,000. The initial shear layer is progressively smoothed out.
The dimensionless parameters are the same as in figure 3.
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(Stewartson 1996). The width of the main layer depends on the Ekman number as E1/4,

which constrains the radial wave number to be very large. For the case of an applied field,

having a flow with a comparable shear rate over larger distances is favourable for a

numerical study, because the instability exhibits larger growth rates under these

conditions. In addition, with a velocity profile as given in equation (5), the nonlinear

terms can compensate the imposed velocity field U0. This leads to the saturation of the

MS-MRI. Because of its smaller size, the inner core does not affect the solution, in

contrast to the previous configuration. We locally measure the rate of shear by

Ro ¼
1

2

dðln�Þ

dðln sÞ

����
���� with � ¼

U0 þ u�
s

: ð6Þ

The resulting number, measuring the shear rate, monotonically decreases as soon as the

instability starts to saturate. Far from the initial saturation phase, Ro still decreases

until a final value which depends on the dimensionless parameters. The results

presented in this article are obtained considering no-slip mechanical boundary

Figure 5. Meridional cuts of azimuthal b� (on the top) and radial bs (on the bottom) at t¼ 7000, t¼ 10,000
and t¼ 15,000 (from left to right). The parameters are the same as in figure 3.
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conditions on the outer sphere. But, in addition, we have performed numerical
nonlinear simulations with stress-free conditions and we did not find any qualitative
differences with the mechanism presented here. Using different boundary conditions
confirmed our results.

3.2. Saturation phase of the most unstable global mode

Figure 6 shows the evolution of kinetic and magnetic energies for A¼ 0.03 and
A¼ 0.01. The linear phase is in agreement with PDB08. Increasing the differential
rotation causes kz modes to vary on smaller scales (see equation (26) of PDB08).
The energies of the perturbed fields increase by several orders of magnitude. The final
energy levels depend directly on A, because the shear is the energy source of the
MS-MRI.

The saturation process of the most unstable mode occurs by quickly reducing the
differential rotation. The nonlinear effects make the angular velocity perturbations
z-independent (figure 7), whereas the induced magnetic fields are just stretched radially
(figure 8). The z-independence is already reached when the perturbations are still much
smaller than the applied fields. As a result, the total vertical shear @�/@z is never
comparable to the radial one expressed by Ro. When saturation occurs, the flow is
constant on cylinders, while the induced magnetic field keeps the same vertical structure
as in the linear phase.

Figure 6. Nonlinear evolution of the kinetic (1, 4) and magnetic (2, 3) energies for two different parameters
A, A¼ 0.03 and A¼ 0.01. The applied velocity field is that of equation 5 and the imposed magnetic field is
purely vertical and uniform. The parameters for this simulation are E¼ 10�5, Pm¼ 0.5 and �¼ 1 .

Non-linear MS-MRI simulations 293

D
ow

nl
oa

de
d 

by
 [

O
bs

er
va

to
ir

e 
de

 P
ar

is
 -

 B
ib

lio
th

èq
ue

] 
at

 0
2:

42
 0

9 
Ju

ly
 2

01
2 



3.3. Long-term evolution

While the new angular velocity profile is stable for the initial vertical wave number, it is

unstable for modes with higher wave numbers. This secondary instability needs some

time to develop, this is why figure 9 exhibits some plateaus. The temporal evolution of

the maximum shear rate depends on the parameters as demonstrated in figure 9, where

the influence of Pm is identified for fixed E, � and A parameters. This process goes on

until the final state is reached which is a mode with approximately kz¼�/0.8 (figure 10).
For E¼ 10�5, the saturated state is obtained after a period ranging between

t¼ 10,000 and t¼ 15,000, and for E¼ 10�6, it is reached after t¼ 25,000. (The units of

time are 1/�0.) These time scales are very short compared to the magnetic diffusion time

Pm/E and the viscous time E�1. According to the above argument, the maximum

differential rotation allowed by the system would correspond to a marginally stable

state. Following the dispersion relation given in PDB08 with 	¼ 0, we find

�4
E�

Pm
k2zRoth þ

E�

Pm

� �2
k2k2z þ 4

E2

P2
m

k4 ¼ 0; ð7Þ

Figure 7. Illustration of the saturation mechanism. These meridional cross-sections show the angular
velocity perturbations u�/s at time t¼ 400 (on the left), t¼ 450 (on the centre) and t¼ 500 (on the right).
Progressively, the nonlinearities yield a geostrophic angular velocity profile. The parameters used for this
simulation are E¼ 10�5, �¼ 1, Pm¼ 0.5 and A¼ 0.03.
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with k2 ¼ k2s þ k2z and where the critical Rossby number given by this theory Roth is
defined by the above equation. In order to calculate Roth in table 1, we used ks¼�/

s in which 
s is the width of the induced magnetic field at middle intensity
obtained from numerical simulations. To determine kz during the simulations, we
performed a Fourier transform of the induced magnetic components. We can define

z by kz¼�/
z. We can define 
z by kz¼�/
z. For the final state, the mechanism
presented here suggests that 
s and 
z depend only slightly on the parameters as we
noticed in the region of parameter space covered. We used typical estimates:

s¼ 0.37 and 
z¼�/0.8.

4. Applications to Jupiter

In this section, we illustrate this mechanism, motivated by the banded structure
observed in Jupiter’s atmosphere (Cho and Polvani 1996, Porco et al. 2003).
In particular, we wish to address the possibility of an origin of these structures in
deep layers, where the fluid is electrically conducting (metallic hydrogen), and therefore
influenced by the presence of a magnetic field (Yano 1994, Aurnou and Olson 2001,
Christensen 2002, Morin and Dormy 2005). Numerical simulations of convection
(Heimpel et al. 2005) show that the zonal wind resembles the banded structure of
Jupiter and Saturn for high enough Rayleigh numbers. However, such a banded

Figure 8. Meridional cross-sections of the azimuthal magnetic field for an applied banded structure
with A¼ 0.03 (at times t¼ 400 on the left and t¼ 600 on the right). These results are obtained
numerically with an applied vertical magnetic field. The other parameters for this simulation are E¼ 10�5,
Pm¼ 0.5 and �¼ 1 .
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0 5000 10000
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0.001
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Pm=0.25
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R
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Figure 9. Temporal evolution of the maximum Ro for different Pm. The other parameters are E¼ 10�5,
�¼ 1 and A¼ 0.01.

Figure 10. Temporal evolution of the vertical wave number kz (solid curve) and 250 Ro (dashed curve)
for E¼ 3� 10�6, �¼ 1 and Pm¼ 1.
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structure in the inner conducting region would be unstable in the presence of vertical
magnetic field. Indeed, considering the �-profile of angular velocity observed in the
Jovian atmosphere, and assuming a geostrophic structure (�Jup¼�Jup(s)¼U0(s)/s),
linear analysis predicts that all bands are locally unstable when a vertical magnetic field
is imposed at sufficiently small Ekman number. Realistic Ekman number can however
not be achieved. Instead, we solve the linearised MHD equations with E¼ 10�6 and
�¼ 1, and find that only the band closest to the atmosphere is MS-MRI unstable with a
growth rate of 	¼ 0.0052. Decreasing the Ekman number to E¼ 5� 10�7, destabilises
all bands.

In the nonlinear regime, the bands are progressively suppressed (figure 11).
The forced velocity field used for this simulation has the form U0(s)¼ s�Jup(s).
The boundary conditions and the initial conditions are unchanged. The simulation has
been terminated only at t¼ 1500 when saturation initially sets in. The profile has been
modified within a very short time period. In this context, the MS-MRI could provide
a new constraint on the flow. This would suggest that the observed Jovian-banded
structure cannot be maintained in the conducting zone, because it would then be
unstable to the MS-MRI. This result suggests that either the origin of the banded
structure is not deep, or convection is powerful enough to maintain the profile against
this destabilising process. In the latter case, the system remains unstable, and the
MS-MRI could then play an important role in the dynamo process. As mentioned in
PDB08, this role could be to induce rapid variations of the global magnetic field.

5. Summary and discussion

We have studied the MS-MRI occurring in the spherical Couette flow (section 2) and in
simulations with an imposed geostrophic shear profile (section 3). The initially most
unstable mode saturates by limiting the magnitude of the shear geostrophically
(figure 7), whereas the induced magnetic field is just stretched radially (figure 8). In the
simulations with the spherical Couette flow, the conducting inner core plays a crucial
role by introducing a vertical shear. The angular velocity profile tends to reach a

Table 1. The maximum Ro for some dimensionless parameters.

E Pm � Ro Roth

10�5 2 1 0.0033 0.0026
1 1 0.0055 0.0052
0.5 1 0.0090 0.010
0.25 1 0.0174 0.0205
0.5 4 0.0023 0.0042
0.5 10 0.0050 0.0054

3� 10�6 1 1 0.0033 0.0016
0.5 1 0.00325 0.0031
0.25 1 0.0051 0.0062
0.5 10 0.0030 0.0016

10�6 0.5 1 0.0012 0.0010

Note: This output parameter corresponds to the maximum shear rate obtained numerically for the final saturated state. Roth is
obtained considering marginal stability with kz¼�/0.8 and ks¼�/0.37
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stationary state in which � is not z-independent and it decreases smoothly from the
inner core to the outer shell boundary. For an imposed shear profile as given by
equation (5), unstable modes with smaller and smaller kz develop as the simulations are
advanced in time. These secondary instabilities have the same character as the primary,
and they saturate by further decreasing the maximum radial shear (as measured by Ro).
The final stationary state appears to be marginally stable (table 1). The final state is
reached within a short timescale compared to viscous or magnetic diffusion times.
Following these arguments, the MS-MRI could be an important feedback mechanism,
limiting the maximum magnitude of the shear in natural dynamos.

The theoretical work on the saturation of the MRI done by Knobloch and Julien
(2005) is not applicable to Keplerian accretion disks. These authors mention that the
MRI saturates by compensating the background shear whereas in accretion disks, the
rotation profile is forced and maintained by the massive central object. But in our
simulations, the nonlinear effects can offset the imposed profile. Knobloch and Julien
(2005) use the assumptions �0L� vA, Ro�0L� vA and Rm¼Ro�0L/��S¼ vAL/
�� 1, in which S is the Lundquist number and Rm is the magnetic Reynolds number.
At the beginning of our simulations, these inequalities are satisfied, but, when Ro

decreases by one order of magnitude, they are not longer valid. From a geophysical
point of view, it could be interesting to carry out their theoretical analysis in the
small Ro regime.

Figure 11. Evolution of the angular velocity profile with time. At t¼ 0, the profile is obtained from
observations of the Jovian atmosphere. The parameters for this simulation are E¼ 5� 10�7, Pm¼ 0.5
and �¼ 1.
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Although the MS-MRI is probably not responsible for the dynamo action in
planetary interiors, it may affect the way in which this process takes place by limiting
the maximum amplitude of the shear. Numerical simulations often have rather large
radial shear, but if the chosen parameters do not allow for the MS-MRI on interesting
time scales, the results inferred may be misleading. Care must be taken to note the
distinction between parameter regimes relevant to planetary interiors and those that are
numerically achievable, which are often not influenced by the MS-MRI.
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