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The magnetorotational-instability is central to the understanding of many astrophysical magnetohydro-
dynamic flows (in particular accretion discs). We have recently shown that a modified version of this
instability, the magnetostrophic MRI (MS-MRI), is relevant to the dynamics of the Earth liquid core (Pet-
itdemange et al., 2008). Our previous study used a purely axial imposed magnetic field and considered
only axisymmetric instabilities. We investigate here the effects of a large scale toroidal magnetic field
on the development and saturation of the MS-MRI both in an axisymmetric setup and in fully three-
dimensional configurations. We use direct numerical modeling of the full MHD equations (both in the lin-
ear and non-linear regimes) in a spherical geometry. We interpret our results using WKB expansions and
shearing coordinates. We find that three-dimensional MS-MRI modes exhibit a strong helical structure
for parameters relevant to planetary interiors. Three-dimensional MS-MRI modes share some similarities
with their axisymmetric counterparts. They are amplified on the same short timescale. When non-linear
effects become significant, they act to decrease the shear. During saturation, the magnetic structure
expands spatially, while drifting at a constant rate along the direction of the rotation axis. A striking
result is that an m ¼ 1 mode can dominate in the non-linear regime when a sufficiently large toroidal
field is present. Three-dimensional MS-MRI modes could play an important role in planetary interior
dynamics. They can cause rapid magnetic field variations and also act to limit the shear in the conducting
liquid core.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The magnetorotational instability (MRI) can develop in the
presence of a weak magnetic field in a differentially rotating con-
ducting fluid. It is an essential effect in understanding the dynam-
ics of accretion disks owing to the presence of a strong shear in
these objects (see Balbus and Hawley, 1991). It was shown that
this instability can also affect the dynamics of planetary interiors
(Petitdemange et al., 2008). The rotation properties of planetary
interiors obviously differ from those of an accretion disk. To lead-
ing order, they correspond to solid body rotation. In addition, the
resistive effects are on an equal footing with dynamical processes.
The relevant force balance in the Earth core is the so-called ‘‘mag-
netostrophic regime’’, which allows for the development of a
slightly modified version of the classical MRI. We refer to this
as the magnetostrophic-MRI or MS-MRI (Petitdemange et al.,
2008).

Earlier studies relied on a very simple local model, involving a
purely axial background magnetic field and a rotation constant
on cylinders. In this study, we investigate the MS-MRI with a more
elaborate planetary interior model, in which an additional back-
ground toroidal magnetic field is taken into account. We highlight
the action of curvature terms associated with background mag-
netic field lines on both axisymmetric and non-axisymmetric dis-
turbances. Because the shear is weak, curvature terms are on the
same footing in this problem as the background gradients of the
zonal velocity, introducing yet another essential distinction with
accretion disks.

In this manuscript, we do not focus on the origin of the global
magnetic fields, but on MHD instabilities induced by the presence
of a background shear and a global magnetic field in rapid rotating
systems. In contrast to the axial magnetic field geometry consid-
ered in Petitdemange et al. (2008), we study here a helical mag-
netic configuration. This is a somewhat more realistic field
geometry, as differential rotation generates azimuthal from poloi-
dal fields (the so called x-effect). According to Roberts and Gub-
bins (1986), the toroidal component could exceed the poloidal
one by a factor Rm (Rm is the magnetic Reynolds number
Rm ¼ UL=g) in the Earth outer core (Rm � 100). The belief that
the toroidal component largely exceeds the poloidal in planetary
interiors, led previous stability analyses to consider only a purely
toroidal applied field (see Acheson and Hide, 1973 and Fearn,
1993).
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Fig. 1. The most unstable mode in a direct numerical simulation with
E ¼ 2:5� 10�6; Pm ¼ 0:5; K ¼ 1 and b ¼ 10. The applied toroidal magnetic field
modifies the MS-MRI mechanism, as illustrated by the fact bs is not anymore in
quadrature with us .
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2. Formulation

We investigate the stability of a conducting fluid in a rotating
sphere subject to a background flow U0 and field B0 in a rotating
spherical domain. Perturbations are governed by the linearized
MHD equations

@u
@t
þðU0 �$Þuþðu �$ÞU0þ2ez�u¼EDu�$pþKE

Pm
ð$�B0Þ�b
þð$�bÞ�B0

� �
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ð1Þ

@b
@t
¼ E

Pm
Dbþ $� U0 � bþ u� B0½ �; ð2Þ

$ � b ¼ 0; $ � u ¼ 0; ð3Þ

where we introduced the Ekman number, the Elsasser number and
the magnetic Prandtl number defined as

E ¼ m=ðX0r2
oÞ; K ¼ B2

0=ðlq0gX0Þ; Pm ¼ m=g: ð4Þ

As usual, m; g; q0; l denote the kinematic viscosity, the mag-
netic resistivity, the density and the magnetic permeability, all as-
sumed to be constant. Where X0 denotes the angular rotation of
the outer sphere, which serves as reference frame, and B0 denotes
the magnitude of the axial component of the background magnetic
field, constant in time. The background magnetic field considered
in this study also includes an azimuthal component. In the above,
we used the radius of the spherical domain ro as unit of length, and
1=X0 as unit of time.

We perform direct numerical simulations (DNS) of this system
of equations in a spherical geometry using the PaRoDy code (Dor-
my et al., 1998, and later collaborative developments). We want to
stress the presence of the ð$� B0Þ � b term in the Navier–Stokes
equation, as we consider here a more complex background mag-
netic field than in Petitdemange et al. (2008). We are particularly
interested in studying the role of a background helical magnetic
field. The magnetic configuration has no cylindrical radial compo-
nent, and the toroidal applied field is thus time independent. For
convenience, we restrict this paper to the study of a toroidal field
proportional to s. Such a field reduces the possibility of generating
purely magnetic instabilities (see Acheson and Hide, 1973).

The reference state ðU0;B0Þ is axisymmetric and has a very sim-
ple mathematical form. In all the simulations presented in this pa-
per, the reference velocity field depends only on the radial
cylindrical variable s ¼ r sin h as a simple gaussian function

U0 ¼ Roe� s�1=2ð Þ2=de/; ð5Þ

where Ro, the Rossby number, is a scalar parameter which measures
the importance of the differential rotation. Throughout this work,
we have set d ¼ 0:015 (This velocity profile was used previously
in Petitdemange, 2010).

The fluid is threaded by the background magnetic field B0. In
contrast to previous numerical investigations, here B0 has a helical
form, i.e. B0 ¼ B0ez þ B/e/ where ðes; e/; ezÞ denotes the unit vec-
tors in cylindrical coordinates.

Our analysis is restricted to an applied magnetic field having no
radial component. The effect of including a radial component in the
reference field would obviously be to generate a linear growth in
time of the toroidal component. We choose to focus on a steady
background toroidal field of the form B/ / s ¼ r sin h, where
ðr; h;/Þ denote spherical coordinates. This spatial form has several
advantages. First, it is very simple and allows a direct comparison
of numerical results with local analysis carried out in cylindrical
coordinates. Second, this magnetic configuration is stable with re-
spect to Acheson-type instabilities (see Acheson and Hide, 1973).
Finally, the Lorentz force associated with such a helical field can
be easily compensated by a radial pressure gradient (in cylindrical
coordinates). This background field has no particular physical ba-
sis, and is chosen here primarily for convenience.

Note that, because of diffusion, the reference field is not an ex-
act steady solution of the induction equation. We are interested
here, however, in modes growing more rapidly than the diffusion
timescale.

Finally, we introduce b ¼ B/ðs ¼ 1=2Þ=Bz as a measure of the ra-
tio of the toroidal to poloidal applied field.

3. Effect of a toroidal magnetic field on the linear axisymmetric
mode

3.1. Numerical simulations

Petitdemange et al. (2008) discussed the particular spatial
structure of unstable modes arising from a purely axial background
field. These modes have a radial field component bs that is exactly
out of phase by half a period with respect to the azimuthal field b/.
The radial velocity perturbation us is a quarter-period ahead of b/.
This result is a hallmark of the MS-MRI mechanism. This phase-
shift might allow the possibility of identifying the instability in glo-
bal direct numerical dynamos, but the action of an additional back-
ground toroidal field strongly modifies this phase dependency. us is
no any longer exactly a quarter-period shifted (see Fig. 1). In addi-
tion, we find that the phase drift depends on the dimensionless
parameters. The classical picture described above is recovered only
in the limit of vanishing Ekman number.

It is well known that the magnetic energy of magnetostrophic
waves is much greater than their kinetic energy. In Table 1, the ra-
tio of the magnetic to kinetic energy (hereafter noted RE) is given
for our numerical results. RE depends on the magnitude of the
background toroidal field and on the dimensionless parameters.
As expected, it increases when the parameters approach the limit
relevant to planetary interior, i.e. small Ekman number E, small
magnetic Prandtl number Pm, small magnetic Ekman number
E=Pm and Elsasser number K of order unity.

We find that in the presence of a strong enough toroidal field, as
measured by Q ¼ bEK=Pm, the dominance of the magnetic energy
over the kinetic energy is suppressed (i.e. RE decreased).

We observe that the steady instability induced by a purely axial
background field becomes an overstability instability in the pres-
ence of a helical background field Hollerbach and Rüdiger (2005).
The perturbations grow exponentially while propagating along



Table 1
Numerical axisymmetric results obtained for a helical background field.

2E Pm 2K b Ro IReðrÞ IImðr) RE

2:10�5 0.5 2 15 0.03 0.0325 0.0025 11

0.5 2 1 0.03 0.0352 0.0003 45

10�5

0.5 2 10 0.03 0.0389 0.0009 30
0.5 1 10 0.03 0.0214 0.00052 67
0.5 2 1 0.03 0.0401 0.00012 47
0.5 2 0 0.03 0.0384 0 48
0.5 2 10 0.01 0.0099 0.00078 45.5
0.5 2 3 0.01 0.010 0.00025 130

5:10�6

0.25 2 3 0.01 0.010 0.00025 122
0.5 2 10 0.005 0.0050 0.000415 11
0.25 2 0 0.005 0.0039 0 319

3:10�6 1 1 10 0.03 0.0247 0.00017 83

0.5 1 10 0.03 0.0226 0.00013 112
0.5 2 10 0.01 0.0128 0.00025 95
0.5 2 3 0.01 0.0128 0.00007 151
0.5 2 1 0.01 0.0126 0.00002 160
0.25 2 3 0.01 0.0112 0.00015 137

2:10�6

0.25 4 3 0.005 0.0081 0.000185 143
1 2 10 0.005 0.0067 0.00008 221
0.25 2 10 0.03 0.0428 0.00034 39
0.25 2 10 0.01 0.0124 0.00031 84
0.25 2 10 0.005 0.0053 0.00030 109
0.25 2 3 0.005 0.0053 0.00010 234
0.25 2 1 0.005 0.0052 0.00003 291
0.1 2 3 0.005 0.0038 0.00023 170
0.1 2 1 0.005 0.0038 0.000085 263
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the rotation axis in the direction of the Poynting flux (or equiva-
lently in the direction �bez). For axisymmetric disturbances, the
growth rates and wavenumbers do not depend on
b ¼ B/ðs ¼ 1=2Þ=Bz. For b > 0, perturbations initially located at
the top of the sheared domain propagate downwards in the �z-
direction, with a fixed wave packet structure. Since the unstable
domain is enclosed by boundaries, the perturbations have to decay
when they reach the lower boundary. However, decreasing the
parameter Q reduces the wave velocity (see Fig. 2).
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Fig. 2. Each triangle corresponds to one simulation listed in Table 1. Only
simulations with Pm < 1 have been included in order to compare numerical results
with the local description of Section 3.2 (black curve) relevant to small Pm numbers.
Our prediction cz / Q � bEK=Pm fits the numerical results very well.
3.2. Local description

Acheson and Hide (1973) studied the magnetic instabilities
caused by the presence of a pure toroidal magnetic field and a
background shear. They performed a local non-axisymmetric linear
analysis in the magnetostrophic regime. The pure toroidal mag-
netic configuration yields only non-axisymmetric unstable modes.
As showed in Petitdemange et al. (2008), an axial magnetic field
acting on weakly sheared flows allows the development of axisym-
metric modes. In this section, we consider axisymmetric distur-
bances ðus;u/;uzÞ and ðbs; b/; bzÞ.

In an astrophysical context, the curvature terms associated with
the toroidal magnetic field are small and usually neglected in local
descriptions, though not of course in global simulations (see Balbus
and Hawley, 1991, 1998). Local analysis in disks uses approxima-
tions suited to the study of short-wavelength perturbations and
weak background magnetic fields.

As noted by Acheson and Hide (1973) and Acheson (1978)),
these curvature terms are important in stability analysis of plane-
tary interiors. We therefore perform a local description using the
WKB approximation in the magnetostrophic regime. We use the
streamfunctions U and W in order to compare our analysis with
the one carried out by Liu et al. (2006) describing HMRI in accre-
tion disks. We therefore introduce

ðus;uzÞ ¼ ð@zU;�s�1@sðsUÞÞ; ðbs; bzÞ ¼ ð@zW;�s�1@sðsWÞÞ: ð6Þ

The linearized MHD equations in the magnetostrophic regime
can then be rewritten

� 2X@zu/ ¼
1

lq0
�2ðB/=sÞ@zb/ þ Bz@zDW
� �

; ð7Þ

2X@zU ¼
1

lq0
Bz@zb/ þ @zWðB/=sÞ þ @zWdsB/

� �
; ð8Þ

ð@t � gDÞW ¼ Bz@zU; ð9Þ
ð@t � gDÞb/ ¼ Bz@zu/ � @zUdsB/ þ ðB/=sÞ@zUþ sdsX@zW; ð10Þ

where D � @sð@s þ s�1Þ þ @2
z .

Contrasting with Liu et al. (2006), no a priori radial dependency
has been assumed for B/. We also consider here the magnetos-
trophic limit, rather than the complete Navier–Stokes equations.
This simplifies the calculation. Our results may also be compared
with those obtained by Pessah and Psaltis (2005).

Note the presence of two additional terms in (7)–(10) as com-
pared to our earlier study (Petitdemange et al., 2008). These terms
involve dsB/ and B/=s. These are often referred to as ‘‘curvature
terms’’. These are usually small in astrophysical applications, as

1ffiffiffiffiffiffilq0
p B/=s is negligible compared to sdsXK (where XK is the Kepleri-
an angular velocity). In the present study, devoted to planetary
interiors, however, one needs to compare the squared relative dif-
ferential rotation DX=Xð Þ2 with b2EK=Pm . Some assumption is
needed both on DX and on b for which we lack direct measure-
ments, however both terms are of the same order of magnitude
for a wide range of sensible values.

Using the WKB approach, perturbations take the form
expðrt þ iðkssþ kzzÞÞ where r is the growth rate, ks and kz are
respectively the radial and the axial wavenumbers. We introduce
the notation VAz ¼ Bz=

ffiffiffiffiffiffiffiffiffilq0
p

VA/ ¼ B/=
ffiffiffiffiffiffiffiffiffilq0
p

, and note xz ¼ kzVAz

and xg ¼ gk2 with k2 ¼ k2
s þ k2

z .
The second order dispersion relation then takes the form

Ar2 þ Brþ C ¼ 0; ð11Þ

with

A ¼ 4X2; B ¼ 8X2xg � 2X8i
VA/

s
xz; ð12Þ

and



24 L. Petitdemange et al. / Physics of the Earth and Planetary Interiors 223 (2013) 21–31
C ¼ �x2
z s

d
ds

V2
A/

s2

 !
� 4x2

z

V2
A/

s2

þ k2

k2
z

x4
z þ 2Xs

dX
ds

x2
z þ 4X2x2

g þ 8Xxgi
VA/

s
xz: ð13Þ

The solution takes the form

r ¼ � B
2Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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dX
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k2
z

x4
z

vuut : ð14Þ

Eq. (14) reveals, as noted by Acheson and Hide (1973) for non-
axisymmetric disturbances, that a positive gradient of B/=s has the
same destabilizing action as an outwardly decreasing angular
velocity. Fearn (1993) considered a very similar stability criterion
with an azimuthal field only (see his Eq. (3)). In the presence of a
purely toroidal field, axisymmetric disturbances are strongly stabi-
lized by the rapid global rotation. An applied axial field allows the
development of an axisymmetric instability. The analogy between
B/=s and X also holds for axisymmetric disturbances in the pres-
ence of an helical field.

As in Petitdemange et al. (2008), the most unstable mode corre-
sponds to ks ¼ 0. The growth rate is a decreasing function of ks. In
order to satisfy the local assumption necessary for a WKB analysis,
we therefore need to consider unstable modes in the limit ks � kz.

It is interesting to note that B does not depend on the deriva-
tives of B/ and X. B has a non-vanishing imaginary part for
B/–0. Unstable perturbations therefore grow exponentially with
the phase velocity

cz ¼ �
VA/

s
VAz

X
: ð15Þ

Since the imaginary part of the growth rate depends linearly on
kz, the group velocity is here equal to the phase velocity, the wave
packet is not modified as the instability proceeds along the z-
direction.

As noted above cz does not directly depend on the shear rate
dX=ds. It should however be noted that the magnitude of the shear
rate obviously controls that of the background field B/ through the
x-effect (e.g. Dormy and Soward, 2007).

In order to get a crude estimate of the order of magnitude of cz,
we approximate s by the unit of length and divide the phase/group
velocity by LX to make it non-dimensional

cz

LX
¼ bEK

Pm
¼ Q : ð16Þ

Because of the smallness of the Ekman number in planetary
interiors (E 	 10�15 for the Earth’s outer core), the drift time ap-
pears long compared with the short growth time. We may there-
fore argue that, in the magnetostrophic regime, axisymmetric
perturbations are only slightly modified by a background toroidal
magnetic field. The drift will be slow and the growth rate is unaf-
fected by a B/ / s.

Following the same approach as Petitdemange et al. (2008), we
identify the axial wavenumber kzmax for which r ¼ rmax (maximum
growth rate). We identify kzmax by solving dIReðrÞ=dkz ¼ 0. The fol-
lowing equation results

4 s
d
ds

V2
A/

s2

 !
�x2

zmax þ 4X2Ro0
 !

x2
zmax

K2 ¼

4X2Ro0 þ s
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� 2x2
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; ð17Þ

which can be rewritten as a polynomial equation for x2
zmax
x4
zmax � 4X2Ro0 þ s
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ds
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� �� �2

4ð1þK�2Þ
¼ 0; ð18Þ

where we have introduced the shear rate Ro0 ¼ ðs=2XÞdX=ds. The
physically meaningful wave number solution is then

x2
zmax ¼ k2

zmaxV2
Az

¼ 2X2Ro0 þ 1
2

d
ds

V2
A/

s2

 ! !
1� ð1þK�2Þ�1=2
	 


: ð19Þ

If we now adopt an observational point of view, the axial drift
can only be identified over a typical distance kz ¼ 2p=kz. Using
kzmax and Eq. (16), the characteristic timescale for axial drift can
then be estimated

Xscz ¼
2p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

2EKjRo0j 1� ð1þK�2Þ�1=2
	 


vuut ; ð20Þ

where we assumed B/ / s. An estimate of this timescale for the
Earth interior would be as short as the amplification time of the
most rapidly growing MS-MRI mode (see Petitdemange et al.,
2008; Soward and Jones, 1983), i.e. of the order of a year, either if
the condition b > 3000 is realized, or if the instability takes place
close to the axis of rotation (where the effects of curvature are
stronger).

Inserting kzmax in Eq. (14) provides the maximum growth rate

IReðrmaxÞ ¼ s
dX
ds

����
����þ 1

2X
s

d
ds

V2
A/

s2

 !" #
K=2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK2

p ; ð21Þ

which can be compared with Petitdemange et al. (2008) Eq. (25).
The growth rate is unaffected by a background field proportional
to s. This is consistent with the numerical results presented above,
in which IReðrÞ does not depend on b (see Table 1).

In order to understand how the magnitude of b affects the ratio
RE of the magnetic energy to the kinetic energy, we sum the
squares of the Eqs. (7) and (8) and using the WKB approximation,
we obtain

4X2ðu2
s þ u2

/Þ ¼ �x2
z þ 4

V2
A/

s2

 !
ðb2

s þ b2
/Þ þ s

d
ds

VA/

s

� �
bs

� �2

þ 2bss
d
ds

VA/

s

� �
ixzb/ þ 2

VA/

s
bs

� �
: ð22Þ

Obviously RE takes a very simple form if VA/ / s. We note that if
bQ � 1;RE will be large compared to unity (as expected in the
magnetostrophic regime). However, in the parameter regime
which can be addressed numerically, this condition is not met,
and RE is therefore affected by b as shown in Table 1.

In addition, our choice for the B/ dependency maximizes RE. In
realistic numerical models, such as self excited dynamos, the real-
ized B/ could be much more complicated. However, in the magnet-
ostrophic limit bQ � 1, correction terms in (22) would be small
and even sharp variation of B/ would therefore not prevent RE 
 1.

In order to identify the MS-MRI mode, it is essential to deter-
mine how the background toroidal field can affect the relationship
between bs; b/ and us. At first, from the radial component of the
induction equation, the relation between us and bs is deduced. This
equation is similar to the one derived in Petitdemange et al. (2008).
However, since the growth rate possesses an imaginary part which
depends on Q, the phase shift is not any more fixed for moderate
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Ekman numbers. Relying on the magnetostrophic balance to elim-
inate velocity perturbations in the induction equation, we obtain
(with ks ¼ 0 for simplicity)

rþ gk2
z �

ixz

X
VA/

s

� �
b/ ¼

x2
z

2X
þ s

dX
ds
� s

d
ds

VA/

s

� �� �
bs; ð23Þ

rþ gk2
z �

ixz

2Xs
dðsVA/Þ

ds

� �
bs ¼ �

x2
z

2X
b/: ð24Þ

The phase shift between bs and b/ appears clearly in replacing r
by rmax. We note

IImðrÞ � xz

2Xs
@sðsVA/Þ ¼ �

xz

2X
d
ds

VA/

s

� �
: ð25Þ

The phase shift depends on the derivative dðB/=sÞ=ds. The con-
figuration B/ / s yields a bs half of a period out of phase with b/, as
shown in Fig. 1.

The classical MS-MRI mechanism is modified by the helical
structure of the background field. The modified phase shift and
the group/phase velocity tend to disappear in the magnetostrophic
limit for axisymmetric modes. As a result, the MS-MRI mode as
presented in Petitdemange et al. (2008) would be unaffected by a
smooth background toroidal field in the limit relevant to planetary
interiors. However, this additional component complicates the
identification of the MS-MRI in DNS, as it modifies the phase rela-
tionship between us; bs and b/ and the ratio RE.

The simple WKB approximation used above relies on several
simplifying assumptions which are not always realized in practice.
We use this here as a first step toward understanding the basic
underlying phenomena observed in our DNS (which is of course
free of such assumptions). The description provided by the WKB
approach, while simple, provides a surprisingly accurate interpre-
tation of our numerical results.

4. Non-axisymmetric MS-MRI

We now want to investigate non-axisymmetric MS-MRI modes
arising from the same background state. In the astrophysical con-
text, Balbus & Hawley (1992 paper IV) performed a local stability
analysis for 3D MRI modes using shearing coordinates. Since the
authors were interested in weakly magnetized accretion disks,
they did not take into account the curvature terms associated with
the background magnetic field. For strongly magnetized astrophys-
ical plasmas, Pessah and Psaltis (2005) have shown that the curva-
ture terms associated with the toroidal field lines can play an
important role in strongly magnetized accretion disks. Let us recall
that, in planetary interiors, curvature terms cannot be neglected.

We begin with a description ignoring background magnetic gra-
dients. In order to highlight the effects of magnetic curvature
terms, we first perform a simple WKB analysis using shearing pla-
nar coordinates. Whereas for the MRI, the axisymmetric mode is
always the most unstable, for more arbitrary magnetic configura-
tions, non-axisymmetric modes can at least be transiently more
important, but these ultimately die away as the wavenumber be-
comes strongly sheared (see Soward and Jones, 1983). We then
investigate the effect of the magnetic curvature terms.

4.1. Local analysis in shearing cartesian coordinates

In a shearing coordinates, the radial wavenumber becomes time
dependent according to

ksðtÞ ¼ ksð0Þ �m
dX
ds

t: ð26Þ

If the background magnetic field involves a radial component,
the azimuthal field will grow linearly with time
B/ðtÞ ¼ B/ð0Þ 1þ Bs

B/ð0Þ
s

dX
ds

� �
; ð27Þ

where B/ð0Þ is the initial toroidal field. From the last two equa-
tions, we deduce that k � B does not depend on time. The per-
turbed linearized MHD equations in the magnetostrophic regime
are then

ksus þ
m
s

u/ þ kzuz ¼ 0; ð28Þ

�2Xu/ þ
iks

lq
ðp0 þ B � bÞ � i

k � B
lq

bs ¼ 0; ð29Þ

2Xus þ
im

slq
ðp0 þ B � bÞ � i

k � B
lq

b/ ¼ 0; ð30Þ

kzðp0 þ B � bÞ � k � Bbz ¼ 0; ð31Þ

dbs

dt
þ gk2

totbs ¼ ik � Bus; ð32Þ

db/

dt
þ gk2

totb/ ¼ s
dX
ds

bs þ ik � Bu/; ð33Þ

dbz

dt
þ gk2

totbz ¼ ik � Buz; ð34Þ

where d=dt denotes Lagrangian time derivative,
k2

tot ¼ k2
s þm2=s2 þ k2

z , and p0 ¼ pl. We combine these equations in
order to eliminate the perturbed pressure term p0 in the equation
of motion

�2Xu/ þ
iks

kzlq
k � Bbz � i

k � B
lq

bs ¼ 0: ð35Þ

From $ � b ¼ 0, we get bz ¼ �ðmb/=sþ ksbsÞ=kz. As a result, Eq.
(35) becomes

2Xu/ þ i
k � B
lq

k2
sz

k2
z

bs þ
mks

skz
b/

 !
¼ 0; ð36Þ

and the azimuthal component is

2Xus ¼
imks

sk2
z

k � VAbs þ i
k2

zm

k2
z

k � VAb/: ð37Þ

We have introduced the following notations

k2
zm ¼ k2

z þm2=s2; k2
zs ¼ k2

z þ k2
s ; k2

tot

¼ k2
s þ k2

z þm2=s2: ð38Þ

Using (36) and (37), we substitute us and u/ in the induction
equation

db/

dt
þ gk2

totb/ ¼
ðk � BÞ2

2Xlq
k2

sz

k2
z

bs þ
mks

sk2
z

b/

 !
þ s

dX
ds

bs; ð39Þ

dbs

dt
þ gk2

totbs ¼ �
ðk � BÞ2

2Xlq
mks

sk2
z

bs þ
k2

z þm2=s2

k2
z

b/

 !
: ð40Þ

Let us rewrite this system in the form of a single ODE, differen-
tiating (40) with time we write

db/

dt
¼ �mks

sk2
zm

dbs

dt
þ m2

sk2
zm

dX
ds

bs ð41Þ

� 2X

ðk � VAÞ2
k2

z

k2
zm

gk2
tot

dbs

dt
þ d2bs

dt2 � 2gksm
dX
ds

bs

 !
: ð42Þ

Substitution in (39) yields
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Fig. 4. Non-axisymmetric solutions obtained considering a purely toroidal back-
ground field with magnitudes B/=B0 ¼ 100 (top) and B/=B0 ¼ 300 (bottom), with
kzL ¼ 20 in order to limit resistive effects. All other dimensionless parameters are
identical to Fig. 3.
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d2bs

dt2 þ
s

2X
dX
ds
ðk � VAÞ2bs þ

ðk � VAÞ4

4X2

k2
tot

k2
z

bs

þ 2gk2
tot

dbs

dt
� 2gks

m
s

sX0bs þ g2k4
totbs ¼ 0: ð43Þ

The coefficients of this simple second order ODE are time
dependent through ks. This wavenumber grows linearly with time
and either diffusion or magnetic tension act to stabilize the result-
ing small scale structures. As a result, non-axisymmetric modes
appear as transient events (Balbus and Hawley, 1992; Terquem
and Papaloizou, 1996). Indeed, even without diffusion, the increase
of ks with time enhances the stabilizing effect of the magnetic ten-
sion term k2

totðk � VAÞ4=k2
z . Non-axisymmetric modes are amplified

only until the magnetic tension term exceeds the destabilizing
term (which is not time dependent).

Fig. 3 exhibits solutions for different azimuthal wave numbers
m, a purely axial background field, and parameters relevant to
planetary interiors: E ¼ 10�15; Pm ¼ 10�5, K ¼ 1 and
Ro0 ¼ s=2dðln XÞ=ds ¼ 3:10�4. We consider an axial wavenumber
kzL ¼ 100, where L is the unit of length. Whereas for the classical
MRI, the axisymmetric mode is by far the most unstable one, in
rapidly rotating systems, the growth rates for small m are close
to that of m ¼ 0 even for a purely axial background field. The tran-
sient amplification, occurring while ksðtÞ 6 kz, is significant for low
values of m.

Let us now consider the effect of a background toroidal field B/.
This component is potentially important because a non-vanishing
toroidal field introduces a dependence of k � VA on m. In contrast,
a radial component Bs in the applied field would not introduce such
a dependence. There is therefore no loss of generality in assuming
Bs � 0, as k � B is unaffected in 26,27 (see Balbus and Hawley, 1992,
paper IV).

Fig. 4 shows solutions obtained for kzL ¼ 20 and B/=B0 ¼ 100
and B/=B0 ¼ 300. For the largest magnitude of B/, stabilization
from magnetic tension exceeds that from resistivity. As a result,
the most unstable mode is associated with the smallest magnetic
tension, i.e. m ¼ 1. Decreasing B/ allows the dominance of larger
m modes. But in all cases, the amplification is only transient.

Let us turn to the more general case in which both B/ and Bz are
on an equal footing. According to previous results, it is not surpris-
ing that using a helical background field amplifies axisymmetric
and non-axisymmetric modes (see Fig. 5). The magnitude of B/

determines which mode is the most amplified.
In the parameter regime currently accessible by DNS, transient

amplification of non-axisymmetric modes will also be observed
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Fig. 3. Non-axisymmetric solutions with a purely axial background field. Small m
modes initially grow, with the same rate as the axisymmetric mode, until damped
by phase mixing. Non-axisymmetric events are transient processes with a
significant amplification for small values of m.
when b and K exceed unity, as illustrated on Fig. 6. This shows that
non-axisymmetric modes can play an important role in DNS and
numerical dynamos.
4.2. Local analysis with curvature terms using shearing coordinates

The non-axisymmetric local analysis performed above does not
take into account curvature terms associated with the background
toroidal magnetic field. Since a radial component of the back-
ground field yields a time dependent toroidal field, we treat here
only a helical background field, without a radial component.

The derivation is essentially similar to the previous section, but
including field curvature terms; details may be found in the appen-
dix. Assuming B/ / s, the resulting ODE is

d2bs

dt2 þ 2Xgk2
tot � 2Fik � VA

	 
dbs

dt
þ gk2

tot �
Fik � VA

X

� �2

bs

þ k2
tot

k2
z

ðk � VAÞ4

4X2 bs þ ðk � VAÞ2
sX0

2X
bs � 2gsX0

mks

s
bs ¼ 0; ð44Þ

where F ¼ VA/=s .
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Fig. 5. Solutions obtained for a background helical field using cartesian shearing
coordinates with kzL ¼ 100 and B/ ¼ 3Bz (top) and B/ ¼ 10Bz (bottom).
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Fig. 7. Action of curvature terms on the transient amplification of the m ¼ 1 mode.
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Curvature terms introduce out-of-phase imaginary coefficients.
For the non-axisymmetric modes, these terms yield oscillatory, but
transient, behavior. For the values of B/ considered, the real part of
the eigenvalue (the growthrate) is unaffected by curvature terms.

On the other hand, for a numerically tractable parameter re-
gimes, the imaginary part can be significant. For instance, on
Fig. 7, the solution is strongly modified by the action of curvature
terms. The amplification remains significant. Transient events can
still be strongly amplified and can dominate the axisymmetric
mode for an appreciable period of time.
4.3. Linear direct numerical simulations

We consider the same background state as introduced in Sec-
tion 2.1 and the same linearized MHD equations, but the perturbed
quantities ðu;bÞ are now three-dimensional. Our numerical results
are summarized in Tables 2 and 3.

We can interpret our numerical results in the light of the above
local description. Let us stress however that in the full numerics,
we consider weak background shear rates. The relation kzL > m is
always met, but the approximation kzL
 m, used in the analytical
description, is not justified for such parameters.

First, it should be stressed that in the local approach with phase
mixing, we obtain only transient amplification of the non-axisym-
metric modes. DNS seem to show that these modes can be destabi-
lized at larger forcing parameters. Such a situation (linear
instability at larger forcing to counteract phase mixing) can be
tackled analytically (see for example Soward and Jones, 1983;
Jones et al., 2000). We do not attempt such a study here, but the
numerics is performed in a regime in which non-axisymmetric
modes can grow while preventing lengthscale shortening. Non-axi-
symmetric exponentially growing modes have also been obtained
by Kitchatinov and Rüdiger (2010) for MRI modes in Keplerian
accretion disks model.

The structure of the helicoidal eigenmode, which is well de-
scribed in the local limit, is shown in Fig. 8. The presence of the
toroidal field significantly modifies the phase relation between
bs; b/ and us for non-axisymmetric modes. We have observed for
such modes a pattern similar to that of Fig. 1. The kinetic energy
is azimuthally and axially shifted by half of period compared with
the magnetic one. Non-axisymmetric modes have a particular heli-
cal structure which clearly appears as the magnetostrophic regime



Table 2
Numerical results for 3D perturbed variables. The growth rates (�102) are given for
different azimuthal wave numbers m and dimensionless parameters.

Ro b m=0 m=1 m=2 m=3 m=4 m=5 m=6

2E ¼ 2:10�5, Pm ¼ 0:5, 2K ¼ 2
0.03 10 2.64 5.55 5.02 1.93

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 2
0.03 0 3.9 3.30 1.13

1 3.9 3.75 2.36 0.51
0.03 10 3.84 6.75 4.57 4.73 2.77
0.01 10 0.99 1.79 1.24 0.93
0.01 3 0.96 1.23 1.16 0.48

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 1
0.01 3 0.46 0.59 0.27

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 0:5
0.01 10 0.033 0.18 0.51 0.33

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 0:25
0.01 10 0.035 0.21 0.34 0.41 0.25

2E ¼ 5:10�6, Pm ¼ 0:5, 2K ¼ 2
0.03 0 1.89 1.6 0.65
0.005 0 0.48 0.36

2E ¼ 3:10�6, Pm ¼ 0:5, 2K ¼ 2
0.03 0 3.41 3.39 2.51 0.81
0.01 10 1.28 1.88 2.03 1.19 0.86 0.60

3 1.28 1.32 1.00 0.59 0.37 0.24 0.1
1 1.26 1.06 0.53

0.01 0 1.24 1.03

2E ¼ 3:10�6, Pm ¼ 0:25, 2K ¼ 2
0.01 3 1.12 1.29 1.13 0.73 0.42 0.18

Table 3
The values of the RE ratio (ratio of the magnetic over kinetic energy) for the numerical
simulations listed in Table 2.

Ro b m= 0 m=1 m=2 m=3 m=4 m=5 m=6

2E ¼ 2:10�5, Pm ¼ 0:5, 2K ¼ 2
0.03 10 11 8.5 8.3 7.7

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 2
0.03 0 47.9 38.91 25.2 5.5

1 47.5 37.1 23.7 9.8
0.03 10 20.2 14 9.8 9.1 8.5
0.01 10 45.5 27.5 24.5 23
0.01 3 110 82.1 48.5 23.2

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 1
0.01 3 217.5 132.5 73.9

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 0:5
0.01 10 261 98.5 40.7 31

2E ¼ 10�5, Pm ¼ 0:5, 2K ¼ 0:25
0.01 10 309.8 117 38 30.4 22.6

2E ¼ 5:10�6, Pm ¼ 0:5, 2K ¼ 2
0.03 0 98.1 79 52.6
0.005 0 293 244

2E ¼ 3:10�6, Pm ¼ 0:5 2K ¼ 2
0.03 0 40 39 31
0.01 10 95 60 37 27 24.5 24

3 151 105 66 47 23 16 11
1 158 123 81

0.01 0 155 121

2E ¼ 3:10�6, Pm ¼ 0:25, 2K ¼ 2
0.01 3 137 95 58 39 23 14

Fig. 8. Isosurfaces of the magnetic energy in red (10% of the maximum value) and
of the kinetic energy in blue (40% of the maximum value), for an unstable m ¼ 3
mode and with 2E ¼ 3 � 10�6, Pm ¼ 0:5;K ¼ 1, and Ro ¼ 10�2. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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is approached. The phase shift between the components is then
identical to that described in Petitdemange et al. (2008).

The ratios given in Table 3 provide information on the possibil-
ity to try to observe the signature of this instability in geomagnetic
measurements or in dynamo models. In Petitdemange (2010), the
saturation process of the axisymmetric MS-MRI has been high-
lighted. As RE is very large for axisymmetric modes, the magnitude
of the induced magnetic field significantly exceeds that of the in-
duced velocity field. It was shown that such a magnetic field in-
duces a nonlinear geostrophic flow, which rapidly becomes the
dominant one. Since the MS-MRI fingerprint lies in the relationship
between the magnetic and velocity fields, this non-linear geo-
strophic flow complicates the possible identification of the modes
in observations or in direct numerical simulations of the
geodynamo.

According to the values of RE reported in Table 3, non-axisym-
metric modes would be more easily detectable in direct numerical
simulations, even if these modes drift axially. In the magnetos-
trophic regime, RE 
 1 because of the smallness of the Ekman
number. Even if b ¼ 0, the ratio RE is a decreasing function of m.
5. Non-linear saturation

In the previous section, we have discussed the MS-MRI satura-
tion mechanism, which has been determined from axisymmetric
direct numerical simulations in Petitdemange (2010). Here, we
investigate the effect induced by an additional toroidal background
field. We now consider a non-linear version of equations (1) and
(2)

@u
@t
þ ½ðU0 þ uÞ � $�ðU0 þ uÞ ¼ �2ez � uþ EDu� $p

þ KE
Pm

$� ðB0 þ bÞð Þ � ðB0 þ bÞ½ �;

ð45Þ
@b
@t
¼ E

Pm
Dbþ $� ðU0 þ uÞ � ðB0 þ bÞ½ �: ð46Þ
5.1. Axisymmetric non-linear simulations

Fig. 9 shows that the axial drift velocity is unaffected by the sat-
uration process. This also occurred in the local description, for
which the group/phase velocity does not depend on the back-
ground shear rate. The non-linearly induced geostrophic flow mod-
ifies the background velocity field and allows the saturation of the



Fig. 9. Meridional sections showing the temporal evolution of the induced toroidal magnetic field. The radial expansion evolves with time, indicating that saturation is taking
place. This process occurs while maintaining a constant drift velocity. This non-linear simulation was performed with parameters 2E ¼ 10�5;K ¼ 1; Pm ¼ 0:5;Ro ¼ 0:01 and
b ¼ 10.
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Fig. 10. Time evolution of the maximum shear rate (lower curve) and hjbsb/ji
(upper curve), where h�i denotes the mean value over the whole numerical domain.
Dimensionless parameters for this simulation are 2E ¼ 10�5; Pm ¼
0:5;K ¼ 1;Ro ¼ 0:01 and b ¼ 3.

Table 4
List of performed 3D simulations. The Ekman number is set to 2E ¼ 10�5 in all cases.
In order to achieve such parameters, we consider only 0 6 m 6 30 azimuthal modes,
whereas the number of spherical harmonics is lmax ¼ 250 and the domain is radially
discretized using 352 points.

Run K Pm Ro b

R1 1 0.5 0.03 0
R2 1 0.5 0.03 1
R3 2 0.5 0.01 3
R4 2 0.5 0.01 10
R5 2 0.5 0.03 20
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instability, yet the structures continue to propagate until they
reach the boundary of the numerical domain.

When the structures reach the boundary of the domain, they
vanish in boundary layers. As a result, the absolute value of the
product �bsb/ averaged on the whole numerical domain (hereafter
denoted by �hbsb/i) evolves with time (see Fig. 10). Let us recall
that this quantity is responsible for the non-linear geostrophic flow
which compensates the background velocity field through a reduc-
tion of the shear. Decreasing hjbsb/ji affects the magnitude of the
nonlinear flow and U0 þ u appears with a sharper profile. But,
increasing the shear rate destabilizes MS-MRI modes which ampli-
fy again hbsb/i and the differential rotation is reduced, this mech-
anism takes the form of a relaxation oscillation. Fig. 10 shows
numerical results illustrating this behavior. The maximum shear
rate is the maximum of dðU0 þ uÞ=sÞ=ds computed over the fluid
domain.
5.2. Three-dimensional non-linear simulations

Direct three-dimensional (3D) simulations with low Ekman
numbers require significant numerical resources, so we have used
only 30 azimuthal Fourier modes. The simulations performed are
listed in Table 4. We have limited the time integration to the begin-
ning of the saturation process, and interrupted the simulations
when the maximum shear rate had decreased by a factor of eight.
We therefore do not expect to observe the relaxation oscillations
described in Fig. 10.

As simulations with small magnetic Prandtl numbers are
numerically very demanding, we use Pm ¼ m=g ¼ 0:5. Smaller val-
ues are unfortunately computationally out of reach with present
computers. Since we are interested in the magnetostrophic regime,
we choose K ¼ 1. We have also performed simulations with K ¼ 2,
and observed an increase of the axial drift rate.

We want to investigate the onset of the nonlinear behavior. As
expected from the linear description, the results obtained from
runs denoted R1 and R2 indicate that transient amplification plays
a minor role when the background toroidal field is weak. Satura-
tion occurs by a reduction of the shear, as previously reported for
axisymmetric configurations (see Petitdemange, 2010).

An interesting and unexpected feature appears when Q is in-
creased. Fig. 11 shows the persistence of non-axisymmetric
events for a longer time than predicted by linear theory. Indeed,
the m ¼ 1 mode is still dominant at the end of both simulations
R3 and R5. Saturation is still caused by the modification of the to-
tal flow (U0 þ u). A non-linear axisymmetric geostrophic flow was
induced by the Maxwell stress (as discussed in Petitdemange,
2010). This results in a flattened and radially extended velocity
profile. Let us recall that all unstable modes have the largest pos-
sible radial extension. This radial stretching of non-axisymmetric
modes during saturation appears to reduce the effects of phase
mixing (by slowing the lengthscale shortening). In addition, the
shear rate in the non-linear regime is significantly decreased
and the timescale on which non-axisymmetric modes vanish thus
becomes larger.

Non-axisymmetric modes participate in the generation of the
non-linear axisymmetric flow. Clearly, three-dimensional simula-
tions exhibit an enhanced axisymmetric kinetic energy, while the
axisymmetric magnetic energy is approximately unchanged. The
shear rate is also more rapidly decreased in 3D simulations.
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Fig. 11. Evolution of the magnetic energy for run R3 (top) and R5 (bottom).
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6. Discussion

We have determined the impact of a background magnetic field
having a toroidal component on axisymmetric disturbances. This
additional component modifies the development of MS-MRI
modes. Numerical simulations show that their exponential growth
is associated with a axial drift. The axial drift velocity is directly
proportional to the background toroidal component. Our local
description allows to interpret the numerical results and to extrap-
olate them to the magnetostrophic regime. We have shown that
axisymmetric MS-MRI modes could be affected by the presence
of large-scale toroidal field. Our local description allows to extrap-
olate our results to a relevant parameter space for planetary inte-
riors. In this regime, if the additional large-scale toroidal field is
strong enough, the MS-MRI modes propagate axially whereas the
growth rate is not substantially affected by the presence of the
toroidal magnetic field.

In accretion disks, the axisymmetric MRI mode is always the
most unstable mode. In addition, in sheared systems, non-axisym-
metric modes end up to decay. However, we have shown that non-
axisymmetric MS-MRI modes are relevant to planetary interiors
according to our local linear theory. Whereas the background shear
makes them only transient events, they are initially strongly
amplified for a significant period of time. Our local analysis seems
to account for the physical mechanism observed in the direct
numerical simulations. The amplification rate of 3D MS-MRI modes
depends crucially on the magnitude of the considered toroidal
field. Curvature terms associated with the additional toroidal back-
ground field modify the structure of the modes in numerical sim-
ulations, characterized by a particular phase dependency. This
particular structure appears as a signature of the MS-MRI in the
planetary relevant regime. This result suggests that MS-MRI modes
could be detectable in geodynamo simulations, but small enough
Ekman numbers must be considered.

We have obtained excellent agreement between the local MS-
MRI description and the global mode observed in the linear numer-
ical results, it is however worth pondering on the possibility of an
m ¼ 1 Tayler mode (Tayler, 1973). This instability (relevant to stel-
lar rather than planetary interiors) is however stabilized by rapid
rotation (Pitts and Tayler, 1985; Ruediger and Schultz, 2010). Sim-
ulations performed in the absence of a background shear (vanish-
ing Rossby number) were indeed stable. The Tayler instability can
therefore only play a marginal role, if any, in our direct numerical
simulations. The transition from the MS-MRI mode to the Tayler
mode, for increasing background toroidal field, would deserve fur-
ther studies and could be relevant to stellar interiors.

Our non-linear results may be relevant to the recent experi-
mental results reported by Nornberg et al., 2010. The force balance
in the PPPL experiment corresponds to a balance between the Cori-
olis and the Lorentz force (K � Oð1Þ). The authors interpret the ob-
tained non-axisymmetric modes by the development of Magneto-
Coriolis waves. They however note that the presence of non-axi-
symmetric modes, as opposed to axisymmetric modes, remains
unclear. Our results could account for this unexpected observation.
Our analysis can also be relevant to the traveling wave solutions
observed in the Promise experiment (Stefani et al., 2006, 2008).

Because of the insulating outer boundary conditions, the axi-
symmetric toroidal field vanishes near the surface. As a result,
the magnitude of this component inside Earth’s outer core is unde-
tectable by external probes. The toroidal field could be destabiliz-
ing if locally increasing outward faster than s (see the local
dispersion relation above). Further numerical investigations are
obviously needed. The presence of dominant non-axisymmetric
MRI modes in the non-linear DNS presented in this manuscript
however indicates a probable connection with these recent exper-
imental results. Alternative explanations taking into account the
influence of boundaries in such an experiment have been recently
proposed by Gissinger et al. (2012).

We have highlighted the influence of different magnetic config-
urations on axisymmetric and non-axisymmetric MS-MRI modes.
The magnitude of the large-scale toroidal field affects the axial drift
velocity associated with growing modes as well as the structure of
non-axisymmetric modes which take a helical structure. These re-
sults are of primary interest in order to understand the action of
MS-MRI in planetary interiors. The model which is considered in
this manuscript offer a finer description than the previous studies
on MS-MRI (Petitdemange et al., 2008; Petitdemange, 2010) and
the present study hopefully constitutes a first step towards a
detection of MS-MRI modes in convection driven geodynamo
simulations.

Appendix A. Details of the local analysis with curvature terms
using shearing coordinates

We present here the local analysis, including curvature terms,
as used in Section 4.2. Let us first consider the linearized equation
for the radial component of the motion in the magnetostrophic
balance
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�2Xu/ ¼ �@sðpþ VA/b/ þ VAzbzÞ þ ðVA � $Þbs � 2
VA/

s
b/: ðA:1Þ

In order to eliminate the pressure perturbation, we calculate dz

(A.1)

� 2X@zu/ ¼ �dsðFÞ@/bz � F@s@/bz

� VAz@s@zbz þ ðVA � $Þ@zbs � 2F@zb/; ðA:2Þ

where F ¼ VA/=s.
The azimuthal component is

2Xus ¼ �
1
s
@/ðpþ VA/b/ þ VAzbzÞ þ ðVA � $Þb/ þ

bs

s
@sðsVA/Þ: ðA:3Þ

Combining @z(A.3) and s�1@/(31) yields

2X@zus ¼ �s�1ðVA � $Þ@/bz ðA:4Þ
þ ðVA � $Þ@zb/ þ s�1dsðs2FÞ@zbs: ðA:5Þ

The linearized induction equation affected by the curvature
terms becomes

ðdt � gDÞbs ¼ ðB � $Þus; ðA:6Þ

where D ¼ @sð@s þ s�1Þ þ 1
s2 @

2
/ þ @

2
z . The azimuthal component of

the linearized induction equation is

ðdt � gDÞb/ ¼ ðB � $Þu/ þ sX0bs � uss
d
ds

B/

s

� �
: ðA:7Þ

From Eqs. (A.6) and (A.7), we substitute us and u/ respectively in
(A.4) and (A.2). The component bz is then expressed by using the
condition k � b ¼ 0. This yields two coupled equations

2XikzsX
0 � 2Xikz

dt þ gk2
tot

X
sF0 � i

mks

kz
XF 0 � i

k2
sz

kz
X2

" #
bs ¼

2Xikzðdt þ gk2
totÞ þ i

m2

skz
XF 0 þ i

m
s

ks

kz
X2 � 2FikzX

� �
b/; ðA:8Þ

and

Nbs ¼ i
k2

zm

kz
X2b/; ðA:9Þ

with the notations X ¼ ik � VA, F 0 ¼ dF=ds ¼ dðVA/=sÞ=ds
k2

zm ¼ m2=s2 þ k2
z and

N ¼ 2Xikzðdt þ gk2
totÞ � i

m
s

ks

kz
X2 � i

kz

s
Xdsðs2FÞ: ðA:10Þ

Perturbations proportional to expðikssþ im/=sþ ikzzÞ have been
considered, where ks depends on time. Taking the time derivative
of Eq. (A.9) allows to express

db/

dt
¼ � 2Xk2

z

X2k2
zm

gX02kzmbs þ k�2
zmsX0

m2

s2 bs �
ikz

X2k2
zm

N
dbs

dt
: ðA:11Þ
We can now replace b/ and db/=dt in Eq. (A.8) and obtain an
ODE for the variable bs.

We restrict our attention to the magnetic configuration F 0 ¼ 0 in
order to avoid Acheson-type instabilities and focus on those induce
by the shear. A study of the case F 0–0 is postponed to a future
communication.

We then obtain

2XikzsX0 � 2Xikz
dt þ gk2

tot

X
sF 0 � i

mks

kz
XF 0 � i

k2
sz

kz
X2

" #
bs

¼ 2Xikzðgk2
totÞ þ i

m2

skz
XF 0 þ i

m
s

ks

kz
X2 � 2FikzX

� �

� ð �ikz

X2k2
zm

Þ 2Xikzðdt � gDÞ � i
m
s

ks

kz
X2 � i

kz

s
Xðs2FÞ0

� �

bs � 2Xikz
2Xk2

z

X2k2
zm

gX0ð2mksÞbs � sX0
m2

s2k2
zm

bs

 

þ ikz

k2
zmX2

2Xikzðdt þ gk2
totÞ � i

m
s

ks

kz
X2 � i

kz

s
Xdsðs2FÞ

� �
dbs

dt

!
;

ðA:12Þ

which yields (44).
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