STAR FORMAT meeting, Heidelberg, 17-18 september 2009

The Meudon PDR code on complex ISM structures

F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS)

F. Le Petit (LUTH - Observatoire de Paris)

> J. R. Goicoechea (CAB)

A case study : The [CII] 158 µm line

electrons

dust

Fine structure of the ground state of C+

UV to IR energy transfer via photoelectric effect

IR Continuum

Coolin

lines

SPICA / SAFARI (Joint JAXA / ESA)

- Carbon ionization potential : 11.3 eV
- One of the dominant cooling lines of interstellar gas
- Early stages of star formation
- 0.3% of the bolometric FIR emission of the Galaxy (Wright et al. 91)
- Seen "everywhere"

Bennett et al. 94 (COBE / FIRAS)

A very crude method

- Sample lines of sight in the MHD simulation cubes
- Extract "clouds" by applying a simple density threshold
- Use these as input density profiles in the Meudon PDR code
- Derive 158 µm line intensity vs. HI column density
- Estimate Total gas vs HI relationship
- Build line emission map from simulated cube
- Estimate time required to map the sky area covered by the sim

Compressible MHD turbulence simulations

Hennebelle et al. 2008

- RAMSES code (Teysier 2002, Fromang et al. 2006)
- Adaptive Mesh Refinement with up to 14 levels
- Converging flows of warm (10,000 K) atomic gas
- Periodic boundary conditions on remaining 4 sides
- Includes magnetic field, atomic cooling and self-gravity consistently
- Covers scales 0.05 pc 50 pc
- Heavy computation : ~30,000 CPU hours ; 10 to 100 GB

Density structures along the line of sight

The Meudon PDR code

Stationary ID model, including :

UV radiative transfer:

Absorption in molecular lines Absorption in the continuum (dust) 10000's of lines

Chemistry :

Several hundred chemical species Network of sevral thousand chemical reactions Photoionization

Statistical equilibrium of level populations

Radiative and collisional excitations and de-excitations Photodissociation

Thermal balance:

Photoelectric effect Chemistry Cosmic rays Atomic and molecular cooling

Outputs :

Local quantities :

Abundance and excitation of species Temperature of gas and duts Detailed heating and cooling rates Energy density Gas and grain temperatures Chemical reaction rates

Integrated quantities on the line of sight : Species column densities

Line intensities Absorption of the radiation field Spectra J. Le Bourlot F. Le Petit E. Roueff M. Gonzalez-Garcia J. R. Goicoechea P. Hily-Blant S. Guilloteau C. Joblin G. Pineau des Forêts [...]

http://pdr.obspm.fr/

Simulation results

Total gas to HI conversion

SAFARI mapping speed

- Say the cloud is 1.75 kpc away, 1.6° across
- Pixel size is 5.75" (ie that of the SAFARI FPA pixels)
- FPA is 20x20 (FOV=2'x2')
- 2600 pointings needing between I and 24 seconds
- Total mapping time : 4.5 hours without overheads

Conclusions

SAFARI will be able to map the [CII] emission over large areas in a short time

