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ABSTRACT

Most statistical tools used to characterize the complex structures of the interstellar medium can be related to the power spectrum,
and therefore to the Fourier amplitudes of the observed fields. To tap into the vast amount of information contained in the Fourier
phases, one may consider the probability distribution function (PDF) of phase increments, and the related concepts of phase entropy
and phase structure quantity. We use these ideas here with the purpose of assessing the ability of radio-interferometers to detect and
recover this information. By comparing current arrays such as the VLA and Plateau de Bure to the future ALMA instrument, we show
that the latter is definitely needed to achieve significant detection of phase structure, and that it will do so even in the presence of a fair
amount of atmospheric phase fluctuations. We also show that ALMA will be able to recover the actual “amount” of phase structure in
the noise-free case, if multiple configurations are used.
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1. Introduction

The physics of the interstellar medium (ISM) stands at the cross-
roads of many astrophysical problems, from stellar formation to
galaxy evolution. Without a proper understanding of the pro-
cesses taking place in the ISM, and of their interplay, com-
plete and satisfactory solutions to these problems cannot hope
to be met.

Turbulence is one such process (see e.g. Spicker & Feitzinger
1988; O’Dell & Castaneda 1987; Miesch & Bally 1994), and
it is thought to play a major role in the shaping of the fractal
structures observed (Falgarone et al. 1991; Vogelaar & Wakker
1994; Elmegreen & Falgarone 1996; Falgarone 1998; Stutzki
et al. 1998; Elmegreen et al. 2001).

Consequently, a quantitative description of these structures
is a necessary first step towards understanding the physics of
the ISM, and many statistical tools have been used to this end.
Let us mention the power spectrum (see e.g. Gautier et al. 1992;
Dickey et al. 2001; Stanimirovic & Lazarian 2001), the autocor-
relation function (Kleiner & Dickman 1985; Pérault et al. 1986),
the ∆-variance (Stutzki et al. 1998; Bensch et al. 2001), the frac-
tal dimension (Falgarone et al. 1991) and the wavelet decompo-
sition (Gill & Henriksen 1990).

These various tools are not altogether independent from one
another. By definition, the autocorrelation function is the Fourier
transform of the power spectrum, to which the ∆-variance and
fractal dimension can also be related, albeit less directly (Stutzki
et al. 1998). Finally, the∆-variance can be written as the variance
of wavelet transform coefficients (Zielinsky & Stutzki 1999). On
the whole, it is then fair to say that all of these tools are con-
nected, in one way or another, to the power spectrum, although
some of them are of easier and more reliable use depending on
the type of observation (Stutzki et al. 1998; Bensch et al. 2001).

Since the power spectrum is given by the squared ampli-
tudes of Fourier components, it basically ignores any structural

information that may be contained in the Fourier phases. Now,
each Fourier component corresponds to a plane wave in di-
rect space, with a given wave vector, amplitude and phase. The
Fourier transform being linear, the observed structures are the re-
sult of the interaction between the various plane waves. Ignoring
the phases when characterizing the structures is thus comparable
to ignoring the interference phenomenon, and therefore marks
a major loss in structural information. This has been confirmed
by simple numerical experiments (Juvells et al. 1991; Coles
2005).

In the experiment performed by Coles (2005), the Fourier
phases of a numerical simulation of galaxy clustering,
which is a highly-structured field, are randomly reshuffled in
Fourier space. The resulting field has lost most of the filamen-
tary structure observed in the original image. This shows that
it is in the Fourier-spatial distribution of the phases, and not in
their values themselves, that most of the structural information
must lie.

The importance of this information may be best estimated in
the context of interferometry. Indeed, interferometers essentially
measure some Fourier components of the observed structures,
and thus theoretically provide direct access to their phases. With
the forthcoming ALMA instrument, the ability of interferome-
ters to detect structure in the Fourier phases in real time may be
assessed. This is the purpose of this paper, which is organized
as follows: Sect. 2 offers a summary of the Fourier phase anal-
ysis technique, whose numerical implementation is presented in
Sect. 3. The main part of the paper, dealing with the application
of these techniques to interferometric observations, is the topic
of Sect. 4. Finally, Sect. 5 gives a summary and conclusions.

2. Fourier phase analysis

The importance of Fourier phases in terms of structure has been
exploited in various studies concerning variations of the
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Fig. 1. Column density of a 5123 weakly compressible hydrodynami-
cal turbulence simulation obtained by Porter et al. (1994), used here as
a model brightness distribution for phase structure analysis.

magnetic field in cometary plasmas and Solar wind
(Polygiannakis & Moussas 1995), the large-scale cluster-
ing properties of the Universe (Scherrer et al. 1991; Chiang
& Coles 2000; Watts et al. 2003; Coles 2005), and Cosmic
Microwave Background (CMB) maps (Coles et al. 2004).

As we noted earlier, it is in the Fourier spatial distribution
of phases that information should be sought. To quantify this,
Scherrer et al. (1991) suggested considering the statistics of
phase increments ∆δφ(k) = φ(k + δ) − φ(k) between points sep-
arated by a given lag vector δ in Fourier space.

In a field with no phase structure, all phases are uncorrelated,
and phase increments are therefore uniformly distributed ran-
dom variables. Conversely, if the probability distribution func-
tion (PDF) of phase increments deviates from uniformity, this
deviation may be seen as a signature of phase structure. As an ex-
ample, consider the column density of a 5123 weakly compress-
ible hydrodynamical turbulence simulation (Porter et al. 1994),
shown in Fig. 1. Since this field is periodic, its Fourier phases
can be computed using a Fast Fourier Transform (FFT) algo-
rithm. Given a lag vector δ, the PDF ρ (∆δφ) of phase increments
for this lag is then approximated numerically by computing the
histogram of ∆δφ values. Two of these histograms are shown in
Fig. 2, for lag vectors ex and ey, which are the unit vectors1 of the
Fourier space basis associated with a direct space basis (ux, uy).
We observe that these distributions are not uniform, with a sin-
gle wavelike oscillation around the value 1/(2π), and that the
amplitude of the oscillation is more important for δ = ex than
for δ = ey, which may be interpreted as evidence for anisotropy.

For other lag vectors or different images, the shape of the
histogram remains, although the amplitude may vary. As pointed
out by Watts et al. (2003), the underlying distributions are very
likely to be von Mises distributions, given by

ρ (∆δφ) =
1

2πI0(κδ)
exp

[−κδ cos (∆δφ − µδ)],
where I0 is the zeroth order modified Bessel function of the first
kind, and the parameters µδ and κδ > 0 control respectively the

1 Their lengths are actually 1/Nx∆x and 1/Ny∆y, where ∆x ×∆y is the
actual size of a pixel in direct space and Nx × Ny is the image size in
pixels.

Fig. 2. Histograms of phase increments for the turbulent brightness dis-
tribution (Fig. 1). The lag vectors used are δ = ex (top panel) and δ = ey
(bottom panel). The dotted lines represent the uniform distribution and
the dashed lines are fits by von Mises distributions (see text). The num-
ber of bins is n = 50.

position of the distribution’s minimum and the oscillation’s am-
plitude. Thus, κδ can be viewed as a measure of the amount of
phase structure in the image. For the histograms of Fig. 2, on
which fits by von Mises distributions are shown, the values of κδ
found are κex = 0.197 and κey = 0.0656.

Phase entropy, introduced by Polygiannakis & Moussas
(1995), is another measure of the distribution’s departure from
uniformity, and is defined by the integral

S(δ) = −
∫ π

−π
ρ (∆δφ) ln

[
ρ (∆δφ)

]
d∆δφ.

It reaches its maximum value S0 = ln (2π) for uniform PDFs,
and tends to −∞ for δ-function PDFs. These extreme cases cor-
respond respectively to fields with purely random phases such as
fractional Brownian motions2 (see e.g. Stutzki et al. 1998), and
to fields containing a single point-source. Given these limits, it
is convenient to consider the positive quantityQ(δ) = S0 −S(δ),
which we dub “phase structure quantity” in the rest of this paper.
There is a monotonous relationship between the two measures κδ
and Q(δ), given by3

Q(δ) = κδ
I1(κδ)
I0(κδ)

− ln [I0(κδ)],

2 These are random fields characterized by a power-law power spec-
trum and random phases.

3 I1 is the first order modified Bessel function of the first kind.
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but we shall deal only with the phase structure quantity Q from
now on. The reason for this is computational: phase structure
quantities can be computed on histogram-like functions, while
the parameter κδ requires fitting them by von Mises distributions
first, a procedure which may not converge properly when the
underlying distribution is close to uniform. For the von Mises
distributions fitted on the histograms of Fig. 2, Q(ex) = 9.6 ×
10−3 and Q(ey) = 1.1 × 10−3, respectively. Using column den-
sity fields of the same compressible turbulence simulation at
different times, we find that the typical values for phase struc-
ture quantities lie typically below 10−2, whereas Chiang & Coles
(2000) found values as high as ∼0.4 for gravitational evolution of
density perturbations. Although density contrasts are quite dif-
ferent, making direct comparison somewhat hazardous, this sug-
gests that Fourier phase analysis may be useful in determining
the physical processes governing the formation of structures in
the interstellar medium.

3. Phase structure quantity in practice

Due to the limited number of phase increments that can be com-
puted from a finite-sized image, the histograms do not perfectly
sample the underlying PDFs, but rather include a certain amount
of statistical noise. Consequently, the histograms of phase incre-
ments for images such as fractional Brownian motions are not
exactly uniform, and the corresponding phase structure quan-
tities are not zero. More generally, the phase structure quanti-
ties Q associated with the underlying distributions are to be dis-
tinguished from those found by numerical integration performed
on the histograms, since these depend on the number p of incre-
ments available and the number n of bins used. We write Q̃ for
these estimates of phase structure quantities. For the histograms
shown in Fig. 2, built with n = 50 and p = 512 × 511, we find
Q̃(ex) = 9.8 × 10−3 and Q̃(ey) = 1.3 × 10−3, which shows that
the difference with Q (about 2 × 10−4) can become significant
for low phase structure quantities.

Assessing the detectability of phase structure makes it nec-
essary to determine the threshold of Q̃ above which it can be said
that an image deviates significantly from a “structureless” field,
given values for n and p. Mathematically speaking, this amounts
to determining an upper limit to the probability that the estimate
Q̃ of the phase structure quantity be greater than a given posi-
tive real number x, assuming a uniform parent distribution, as
a function of n and p.

We may obtain such an upper limit by an analytic ap-
proach, as described in detail in the appendix. The demonstra-
tion is based on results obtained by Castellan (2000) in her
Ph.D. Thesis, which is available online4. These results are them-
selves derived from those of Barron & Sheu (1991) and show
that an upper limit to the probability P

({
Q̃ > x

})
is given by

the quantity

n

[
1 − Erf

(
ε

√
p

2(n − 1)

)]
+P

({
χ2 >

2px(1 − ε)2

1 + ε

})
=P1 + P2,

where Erf is the error function and χ2 is the chi-square statistics
of degree n − 1. The first term P1 corresponds to the probabil-
ity of having an histogram with a large fluctuation, the meaning
of “large” being defined by means of the arbitrary positive real
number ε, as explained in the appendix. The second term P2 cor-
responds to the probability of having Q̃ > x with a more regular

4 http://www.math.u-psud.fr/theses-orsay/2000/
6039.html

Fig. 3. Evolution of phase structure quantities Q̃(ex) for fractional
Brownian motion fields of size pl × pl (implying p = pl(pl − 1). The
symbols represent the mean values of the phase structure quantities for
ten realizations of the fractional Brownian fields, while the vertical lines
represent the standard deviations. The different symbols correspond to
n = 50 (diamonds) and n = 500 (squares). The dotted and dashed lines
represent the corresponding theoretical upper limits, according to the
ε-adaptive procedure (grey lines) and the fixed ε procedure (black lines).
The cross represents Q̃(ex) in the case of the turbulent column density
of Fig. 1, for n = 50.

histogram. Since the threshold value x appears in P2 only, we
should look for a value of ε ensuring that P1 � P2, so that we
may decide on the phase structure quantity threshold using well-
known chi-square statistics.

This suggests an “ε-adaptive” procedure, which is the fol-
lowing: For each (n, p) pair, the value of ε is chosen so that P1
is small. The quantiles of the chi-square statistics are then used
to extract a value of x so that P1 � P2 � 1. In practice, we
took P1 = 10−6 and P2 = 10−2. In the end, there is a 0.99 prob-
ability that the phase structure quantity be less than x with these
values of n and p, assuming that the underlying distribution is
uniform. Conversely, if the measured phase structure quantity Q̃
is greater than x with these values of n and p, then the underlying
distribution is most likely non-uniform.

As will be clear later on, this procedure may lead to very
conservative upper limits. That is why we may also follow
a “fixed ε” procedure, in which we set ε to a fixed value, say 0.1,
and simply ignore P1. As in the ε-adaptive procedure, we then
compute x so that P2 = 10−2.

The influence of the number of phase increments p and the
number of bins n on the reliability of the phase structure quantity
may also be studied numerically. To this end, we have computed
a series of two-dimensional fractional Brownian motions of var-
ious sizes. The lag vector being fixed, namely δ = ex, the numer-
ical calculation of the phase structure quantity for these simula-
tions provides us with an estimate of the limit above which one
should conclude that phase structure is indeed present in the im-
age. More precisely, we have computed fractional Brownian mo-
tion fields of size varying from 32 × 32 to 800 × 800 pixels5. For
each size, ten fields were built and two histograms drawn from
the maps of their phase increments, with respectively n = 50 and
n = 500. For each pair (n, p), we then computed the mean and
standard deviation of the ten phase structure quantities associ-
ated with the fields. The results are shown in Fig. 3.

It appears that the computed phase structure quantity in-
creases as the size of the image decreases, and as the number of

5 So that p varies from 32 × 31 to 800 × 799.
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bins increases. This is interpreted by the fact that the histograms
are then less accurate samples of the underlying distributions.
The figure also shows theoretical upper limits computed using
both procedures described earlier. Unsurprisingly, the ε-adaptive
upper limits fall above the values found in the numerical simu-
lations, even well above them, which demonstrates the conser-
vativeness of this approach. On the contrary, fixed ε upper limits
for n = 50 match the numerical estimates better, but actually fail
when n = 500. This is due to the fact that, in this latter case,
P1 >∼ 1, which makes the upper limit thus computed useless.
The position of the phase structure quantity Q̃(ex) for the turbu-
lent column density (Fig. 1) in this plot is quantitative evidence
that this field does harbour phase structure.

4. Application to interferometric observations

4.1. Introduction

In the ideal case, interferometers sample the Fourier trans-
form of observed brightness distributions, and therefore al-
low direct measurement of the phases of Fourier components.
Consequently, it is theoretically possible to have access to phase
increments, and to phase structure quantities for the observed
fields. Since this can be done in real time, as the Earth’s rotation
allows for a better sampling of Fourier space (Thompson et al.
1991), we may look for the minimum observing time required to
detect a significant phase structure quantity in the data. This is
the topic of this Sect. 4.

Before we carry on, however, we should stress that, in prac-
tice, phases measured by the instrument do not directly yield the
actual phases of the model brightness distribution. First of all,
the antennae are not pointlike receptors, so that brightness dis-
tributions are multiplied by a primary beam. In Fourier space,
this corresponds to a convolution of the Fourier components by
a finite size kernel. Consequently, the phase measured at a given
point in the (u, v) plane does not yield the actual phase of the
Fourier component of the brightness distribution at that point,
but involves all Fourier components within a small neighbour-
hood. One may circumvent this difficulty by considering mo-
saicing observation techniques. In short, these amount to imag-
ing large fields by pointing the array towards different directions
successively, and “gluing” the subfields together (Bhatnagar
et al. 2005). In image space, this last step is done in such a way
that the fall-off due to the primary beam pattern in a subfield is
compensated by the rise of the primary beam pattern in the adja-
cent subfield, so that the effective primary beam is more or less
uniform over the large composite field. In Fourier space, these
techniques correspond to a finer sampling of the (u, v) plane,
effectively reducing the size of the convolution kernel, so that
the measured phases are better estimates of the actual phases
of Fourier components. We will not discuss this problem any
further here, as it should require an extensive study that is not
within the scope of this paper, and we assume from now on that
antennae can be modelled as pointlike receptors.

Another point to consider is the fact that measurements in
the (u, v) plane are not sampled on a regular grid, and regrid-
ding is widely used to allow for Fast Fourier Transforms to
be performed (Thompson & Bracewell 1974). This means that
the measured phases end up being associated with a different
wavevector than the one they actually correspond to. In our case,

Table 1. Instrumental parameters.

Wavelength Longitude Latitude Dump time
1.3 mm −67.75◦ −23.02◦ 10 s

Table 2. Array characteristics. For each configuration, the minimum
and maximum separation between any two antennae are given.

Instrument ALMA PdB VLA
Antenna diameter (m) 12 15 25
Number of antennae 60 6 27
A configuration (m) 19–11527 32–400 807–37235
B configuration (m) 76–3005 71–331 247–11314
C configuration (m) 83–2303 48–229 79–3444
D configuration (m) 43–1618 24–113 41–1048
E configuration (m) 34–909 n.a. n.a.
F configuration (m) 15–229 n.a. n.a.

as we use model brightness distributions that are already sam-
pled on a regular grid, the gridding problem can be bypassed6.

Lastly, noise contributions, especially those due to the turbu-
lent fluctuations of the atmosphere, blur the true phase values.
This effect will be discussed in detail, in Sect. 4.5.

4.2. Simulations of observations

The instrument simulator used is of the simplest kind, and its
parameters, taken to match those of ALMA, are summarized in
Table 1. The instrument tracks the source as long as it remains
above a minimum elevation7 of 10◦, which, given the array’s
latitude and the source’s chosen declination of −20◦, represents
a maximum integration time of 11 h and 38 min. Regarding
the number and positions of the antennae on the ground, we
have chosen configurations optimized by Boone (2001) based
on ALMA specifications. For comparison, we have also con-
sidered configurations taken from current arrays, such as the
Plateau de Bure (PdB) radio-interferometer and the VLA. To
make meaningful comparisons, we have used fictitious arrays
located at the same geographical coordinates as ALMA, observ-
ing the same source. Only the number and positions of the anten-
nae are changed to match the configurations of the PdBI and the
VLA. The characteristics of all the arrays used are summarized
in Table 2. Using the source’s apparent movement in the sky and
the locations of the antennae on the ground, we obtain ungridded
(u, v) covers as functions of integration time.

As model brightness distribution, we use the turbulent col-
umn density shown in Fig. 1, which we know harbours phase
structure (Fig. 3). For comparison purposes, a field with the same
power spectrum and random phases is also considered (Fig. 4).
Both model fields are 512 × 512 images, so (u, v) covers are
regridded on a grid of that size, using nearest-neighbour inter-
polation. The size of the (u, v) cells is chosen to be half the
antenna diameter, to satisfy the Nyquist criterion8. This lim-
its the size of the maximum baseline that can be considered.
Only the F and E configurations of the ALMA instrument,

6 This is actually only valid in the noise-free case (see Sects. 4.5
and 4.6).

7 No shadowing of the antennae is taken into account.
8 This means that the actual pixel size is different for the three arrays

considered. We shall not be troubled by this, given that the brightness
distributions used are scale-invariant and are not subject to boundary
conditions, so that their actual physical extents need not be specified
and can therefore be scaled accordingly.
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Fig. 4. Synthetic field with power spectrum identical to that of the tur-
bulent column density field (Fig. 1), and fully random phases.

the D configuration of the VLA instrument and all configura-
tions of the PdB instrument fit on 512 × 512 grids with the corre-
sponding pixel sizes. These are used in the single-configuration
simulations. However, it is possible to consider the more
extended configurations, provided the longest baselines are ig-
nored. We did so in the case of multi-configuration observations,
as explained in Sect. 4.4. As an illustration, Fig. 5 shows the
gridded covers for the F and E configurations of the ALMA in-
strument, considering the time period of one hour centered on
the source’s transit at the meridian.

4.3. Evolution of the measured phase structure
with integration time

As the observation is carried out, more and more Fourier phases
are measured and the number p of phase increments increases,
for any given lag vector δ. The question is whether this allows to
bring the theoretical and numerical upper limits of Fig. 3 down
sufficiently, below the measured phase structure quantities, to
ensure positive detection. To answer this question, Figs. 6 to 9
show the evolution of the measured phase structure quantities as
a function of integration time.

Concerning the E configuration of the ALMA instrument
(Fig. 6), the conclusions that can be drawn are the following: For
δ = ex, a short integration time of approximately twenty min-
utes is enough to conclude that phase structure is present in the
image, since the measured value then becomes larger than the
adaptive procedure’s upper limit. On the other hand, the phase
structure for δ = ey is harder to extract, due to the lower value
of Q̃(ey) for the complete field. Approximately 7.5 h of inte-
gration are required to see the measured phase structure quan-
tity rise above the more conservative theoretical upper limit, al-
though the curves for the turbulent field and its random phase
version are clearly distinguished on the whole range plotted.
When comparing the two panels of Fig. 6, it appears that the
measured phase structure quantity for the maximum integration
time is larger than the value for the whole field in the case δ = ex,
while it is the opposite for δ = ey. These discrepancies are due
to the limited range of measured spatial frequencies, and are ad-
dressed in Sect. 4.4. We point out, however, that the approxi-
mate constancy of the measured phase structure quantities for

Fig. 5. Gridded (u, v) covers for the F (upper panel) and E (lower panel)
configurations of the ALMA instrument, when observing the source
during one hour centered on the meridian transit. Pixel sizes are the
same in both cases, namely 6 × 6 m, and the F configuration cover has
been zoomed. The maximum pixel values are 1726 samples per cell in
the F configuration and 470 samples per cell in the E configuration.

T >∼ 3 × 104 s shows that the (u, v) plane is then close to being
fully sampled within this range.

Regarding the F configuration of the ALMA instrument
(Fig. 7), its compacity leads to a smaller number of phase
increments, which makes phase structure detection all the more
difficult. Our best chances lie with the δ = ex lag vector (upper
panel). In this case, the measured Q̃ remains constantly below
the upper limit set by the adaptive procedure, but becomes larger
than that set by the fixed ε procedure, for an integration time of
just above one hour. This may be seen as evidence that the phase
structure can also be detected with this compact configuration.
Whether it should be possible to determine the phase structure
quantity for the whole field is uncertain, since it falls below the
less conservative upper limit, but above the curve corresponding
to a random-phase field.

Figures 8 and 9 show the evolution of the measured phase
structure quantity Q̃(ex) as a function of integration time, us-
ing the B configuration of the Plateau de Bure interferometer
and the D configuration of the VLA, respectively. What appears
clearly in Fig. 8 is that the number of phase increments mea-
sured by the Plateau de Bure is insufficient to detect phase struc-
ture, as the curves for turbulent and random-phase brightness
distributions are indistinguishable from one another. The same
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Fig. 6. Evolution of measured phase structure quantities with integration
time, for the E configuration of the ALMA instrument. The upper panel
corresponds to δ = ex and the lower panel to δ = ey. The black solid
lines correspond to the turbulent model brightness distribution (Fig. 1),
while the grey solid lines correspond to the random-phase brightness
distribution (Fig. 4). The dotted lines represent the phase structure quan-
tities of the complete turbulent brightness distribution, for each lag vec-
tor, and the dashed lines represent the evolution of theoretical upper
limits with integration time, using the fixed procedure (black lines) and
the adaptive procedure (grey lines).

conclusion prevails for other configurations of this instrument.
On the contrary, the VLA allows such a detection, although it
takes a long integration (about 6 h) to see the phase structure
quantity measured emerge from the adaptive procedure’s upper
limit. Let us note however that the curves for both model bright-
ness distributions start going apart after less than twenty minutes
of integration, which should give observers a first hint that phase
structure is present in the field. This diagnosis can be performed
in real time by drawing random phases for the visibilities as they
are measured.

4.4. Multi-configuration observations

Comparing Figs. 6 to 9, the “best” situation appears to be the
E configuration of the ALMA interferometer, for δ = ex. Yet,
the phase structure quantity obtained after one transit of the
source is not the one computed on the whole field. This is due
to the fact that only 24% of the 512 × 512 Fourier phases are
measured by this configuration. Using more extended configu-
rations, one should be able to recover the Fourier components
lying outside the radius covered by the E configuration, and
therefore hope to recover the correct value of the phase structure
quantity by combining visibilities from multiple configurations.

Fig. 7. Same as Fig. 6 but for the F configuration of the ALMA instru-
ment. The adaptive procedure’s upper limits lie outside of the range of
Q̃ values plotted.

Fig. 8. Same as the top panel of Fig. 6, but for the B configuration of
the Plateau de Bure instrument. As with Fig. 7, the adaptive procedure’s
upper limit lies outside of the range of Q̃ values plotted.

Obviously, this can only be done after the observations have been
carried out, unlike what has been considered until now, so that
we should rephrase our initial question: what is the minimum
integration time necessary in each configuration to ensure that
combining the observed visibilities will lead to a “full” cover-
age of the (u, v) plane?9 In this multi-configuration approach, we
have to consider the extended configurations that do not fit on

9 We should stress that we do not consider a set of integration
times (τ1, . . . , τN ), one for each of the N configurations, but a single
value τ that applies to each configuration separately.
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Fig. 9. Same as the top panel of Fig. 6, but for the D configuration of
the VLA instrument.

Fig. 10. Evolution of measured phase structure quantity Q̃(ex) with in-
tegration time for an observation using all configurations of the instru-
ment in turn. The black solid line corresponds to the six configurations
of the ALMA instrument, and the grey solid line to the four config-
urations of the VLA instrument. The dotted line represents the value
of Q̃(ex) for the whole field.

a 512 × 512 grid with the given pixel size, and simply ignore the
visibilities falling outside the grid.

Figure 10 shows the evolution of the measured phase struc-
ture quantity Q̃(ex) with integration time, using this approach
with the ALMA and VLA instruments. In the former case, it
appears that the phase structure quantity for the whole field is
recovered with an integration time of 9 h in each configuration,
totalling 54 h of observing time. On the other hand, a full-day in-
tegration using the four configurations of the VLA instrument is
not sufficient to reach the phase structure quantity of the whole
field. This emphasizes the better coverage of the Fourier plane
that will be achieved by ALMA.

4.5. Atmospheric phase noise

In the previous subsections, it was assumed that interferom-
eters sample the true Fourier phases of the observed fields.
However, it is well known that turbulent motions within the
atmosphere above the instrument alter the measured phases.
Indeed, these motions cause the amount of water vapor along
the line of sight to vary both in time and from one antenna to
the other. This results in a delay error and thus a phase error for
each baseline. This problem has been addressed thoroughly by

Lay (1997a,b), and simulations of the atmospheric fluctuations
at the ALMA site of Chajnantor have been performed by Stirling
et al. (2005). Here, we have chosen to perform a simulation of
the effects of atmospheric phase noise by introducing an atmo-
spheric mask giving the refractivity field ϑ(x, y, z) above the in-
strument. In practice, we assumed that this field can be regarded
as a 200-m thick layer of frozen Kolmogorov turbulence, that is
being transported along the east-west direction at a wind speed
of 2 m s−1. Using a spatial resolution of 10 m, we computed ϑ
as a fractional Brownian motion of size 8500 × 150 × 20 pixels,
with spectral index −11/3. Integration of ϑ along the different
lines of sight for each antenna as the observation is performed
yields phase delays, which are subsequently correlated in order
to give the atmospheric phase noise φa(α, β, t) for each pair of an-
tennae (α, β), at all times t. The field ϑ is normalized so that the
rms phase noise σ0 for a pair of antennae observing the zenith
and separated by a baseline d = 100 m should be one of a few
specific values, namely 15◦, 45◦ and 90◦.

At each time step, a number of visibilities fall in each cell
of the gridded (u, v) plane, and the observed “mean visibility” in
the cell Ck, centered on wavevector k, is given by

V ′(k, t) =
1

N(k, t)

∑
t′�t

∑
(α,β,t′)∈Ck

V0(k) exp [iφa(α, β, t
′)], (1)

whereN(k, t) is the cumulative number of visibilities within the
cell Ck at time t, and V0 is the true visibility in this cell. This
relation allows for the simulation of the measurement of Fourier
phases in the presence of a given amount of atmospheric phase
noise. Figure 11 shows the evolution of the measured phase
structure quantities Q̃(ex) and Q̃(ey) in the case of the E con-
figuration of the ALMA instrument.

Provided that the value of the phase structure quantity is
large enough for the whole field, as is the case for δ = ex, the
presence of phase structure can be easily detected in the pres-
ence of a fair amount of atmospheric phase noise. Indeed, even
a rms phase fluctuation of 90◦ at 100 m is insufficient to bring the
measured phase structure quantity down below the ε-adaptive
upper limit. In the case of δ = ey, the conclusion is not so clear-
cut: although the σ0 = 15◦ curve exhibits values larger than the
upper limit, it does not remain above this limit after a certain
integration time. Faced with such a situation, one should be sus-
picious of the presence of phase structure in the observed field10.

Butler et al. (2001) performed measurements of the at-
mospheric phase fluctuations above the Chajnantor site, using
a two-element interferometer observing a 11.198 GHz beacon
broadcast by a geostationary satellite positioned 35◦ above the
horizon. Using the scaling relation (Lay 1997a; Stirling et al.
2005)

σφ(d, λ, ζ) = σ0

(
d

100 m

)5/6 (
1.3 mm
λ

)
(cos ζ)−3/4 , (2)

giving the rms phase delay as a function of the baseline length d,
the wavelength λ and the elevation angle ζ, their results translate
to a noise level showing diurnal as well as seasonal variations
going from σ0 ∼ 14◦ to σ0 ∼ 57◦. Consequently, the phase
structure quantity for δ = ex will undoubtedly be detected with-
out any phase correction, although the use of dedicated water
vapor radiometers, as is planned for ALMA, should allow for

10 In any case, phase increments corresponding to various lag vec-
tors δ can be simultaneously computed, in real time, so that for a given
observed field, it is enough that there exist one such lag vector for which
phase structure detection is feasible.
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Fig. 11. Evolution of the measured phase structure quantity with inte-
gration time, in the presence of atmospheric phase noise (solid lines,
with σ0 specified next to each curve). The array used is the E configura-
tion of the ALMA instrument, and the top and bottom panels correspond
respectively to δ = ex and δ = ey. The dotted lines represent the phase
structure quantities for the whole field, and the dashed lines correspond
to the ε-adaptive upper limits.

an effective decrease of the atmospheric phase noise by a sub-
stantial factor (Lay 1997b), making possible the measurement
of the actual phase structure quantity for the whole field, using
multiple configurations.

4.6. Extensions

It should be stressed that the approach used here is not to be con-
sidered optimal, but only as evidence that ALMA will be able
to detect phase structure in the presence of atmospheric phase
noise. Indeed, consider two tracks in the (u, v) plane, correspond-
ing to two different antenna pairs, going through the same grid
cell. In the above approach, the measured phases in this cell may
be very different for one antenna pair and the other, since these
sample different lines of sight through the atmospheric mask. As
a result, the estimation of phase through the “averaged visibility”
of Eq. (1) is badly contaminated. A more elaborate use of phase
information would therefore have to be baseline-based. Keeping
track of the phase measured by each baseline as a function of
time, and computing phase increments along the baseline’s track
should markedly reduce contamination by atmospheric phase
noise. An important point in this approach, which is currently
under study, is that the lag vector δ is no longer a control param-
eter, but a function of time and of the baseline.

Conversely, the consideration of the radial evolution of
phase structure quantities leads to another possible extension
of this work, which is the inclusion of the kinematic dimen-
sion. Velocity information is indeed accessible with high spec-
tral resolution receivers such as those that will be used for
ALMA (4096 spectral channels over 16 GHz bandwidths).
Consequently, Fourier phase analysis applied to individual
channel maps may prove a valuable tool for assessing the three-
dimensional structure of velocity fields. We may for instance
wish to compare phase structure quantities found across line pro-
files, and see if values found for individual channels are greater
than those found for integrated emission maps, which is likely to
be the case, as they present higher contrasts.

5. Summary and conclusions

In this paper, we have addressed the ability of radio-
interferometers to detect and recover the information contained
in the Fourier-spatial distribution of phases, which was previ-
ously shown to store a vast amount of information about the
structure of images. The PDF of phase increments and the re-
lated concept of phase entropy were introduced in this perspec-
tive. We ourselves have used the phase structure quantity Q,
which is a minor modification of phase entropy leading to Q = 0
for fields with purely random phases.

Our main conclusion is that the dynamical range of spatial
frequencies observed by the instrument is the key parameter al-
lowing detection and measurement of phase structure.

Using a turbulent model brightness distribution and instru-
mental configurations based on the characteristics of the fu-
ture ALMA interferometer and of two existing arrays (VLA
and Plateau de Bure), we have assessed the minimum inte-
gration time required by each configuration to have a signifi-
cant detection of phase structure in the observed field. In the
most conservative assessment, it appears that for a whole-field
phase structure quantity Q � 10−2, detection is achieved with
a twenty minute integration in the ALMA E configuration (base-
lines going from 34 m to 909 m), or with a six hour integration in
the VLA D configuration, but is not achieved by any other instru-
mental configuration tested11. With a whole-field phase structure
quantity Q � 10−3, certain detection can only be achieved using
the ALMA E configuration, in which case it takes about 7.5 h of
integration.

However, less conservative criteria allow for early hints at
the presence of phase structure in the observed field. Indeed, by
drawing random phases for the visibilities in real time, it is pos-
sible to compare the evolution of the phase structure quantity for
the observed field to that for a random-phase field, and check
if they start going apart at some point. This is the case for all
ALMA and VLA configurations, with whole-field phase struc-
ture quantities Q � 10−2 and Q � 10−3, but not for any of the
Plateau de Bure configurations.

Regarding the possibility to recover the actual values of
the phase structure quantity for the complete field, only multi-
configuration observations with the ALMA instrument seem to
allow for it, and it takes 9 h in each of the 6 configurations to
achieve this.

Finally, we have studied the influence of atmospheric phase
noise on the single-configuration observations, using the E con-
figuration of ALMA and whole-field Q � 10−2. The maximum
rms phase fluctuations that can be allowed without completely

11 It should be reminded that the more extended configurations have
not been used in this single-configuration approach.
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washing out the actual phase structure lie well above the typi-
cal range of variations for the Chajnantor site. Consequently, the
use of water vapor radiometers to correct for the atmospheric
phase fluctuations does not appear as a necessary feature of the
ALMA array in this respect, although it should allow for a more
accurate determination of the actual phase structure quantity in
the multiconfiguration scheme.

Possible extensions to this work include the study of phase
increments along the baseline tracks, which should considerably
reduce the effects of atmospheric phase noise, and the evolution
of phase structure with frequency in high spectral-resolution ob-
servations of line sources.

Appendix A: Theoretical upper limits

Independently of the underlying distribution, the parameters
which have an influence on the histograms of phase increments
are the number of samples p and the number of bins n. Assume
then that p phase increments are drawn from a uniform distribu-
tion onA = [−π, π] and distributed over n intervalsAi of equal
length, thus yielding a n-binned histogram h. The phase struc-
ture quantity Q̃ associated with h is nonzero due to the sampling
noise. We therefore wish to obtain an upper limit to the proba-
bility P

(
{Q̃ > x}

)
, as a function of x. The histogram values {hi}

are normalized according to

2π
n

n∑
i=1

hi = 1.

Let us then define the functions

s0(x) =
1

2π
1A and s(x) =

n∑
i=1

hi1Ai ,

where the symbol 1[a,b] stands for the function which is equal to
one on the interval [a, b] and zero outside. The phase structure
quantity associated with h may then be written as

Q̃ = −
∫ π

−π
s0(x) ln [s0(x)]dx +

∫ π

−π
s(x) ln [s(x)]dx.

Now, since s0 is actually a constant on [−π, π], and since both s
and s0 are normalized to unity, it is straightforward to obtain

Q̃ =
∫ π

−π
s(x) ln

[
s(x)
s0(x)

]
dx,

which shows that the phase structure quantity may be inter-
preted as a Küllback pseudo-distance of s to s0. The method of
Castellan (2000) suggests to find an upper limit to P

(
{Q̃ > x}

)
by treating separately the cases of regular and extraordinary his-
tograms, the latter being when the histogram presents an unusu-
ally large or unusually low value. Let us then define, for any
ε > 0, the event

Ωε = {∃i; |xi − r| > εr} with xi =
2π
n

hi and r =
1
n
·

The eventΩε is precisely the occurrence of an extraordinary his-
togram, and it depends on the real number ε. For instance, if
ε = 0.1, this event occurs if one of the histogram values devi-
ates from the uniform value 1/(2π) by more than ten percent.
The value of xi may here be interpreted as the mean number of
successful events in a series of p Bernoulli trials, the event in
question, whose probability is r, being that a phase increment

belongs to intervalAi. The usual values of p and n (in our case
p = 5122 and n = 50) make it reasonable to assume that the
central limit theorem applies. We may then write

P(Ωε) � nP ({|xi − r| > εr}) ≈ n [1 − Erf(xε)] ,

introducing the value of the error function

Erf(x) =
2√
π

∫ x

0
e−t2

dt at xε =

√
p

2(n − 1)
ε.

Numerically, for p = 5122 and n = 50, the probability that there
exist an intervalAi containing a number of increments different
from the theoretical value by over five percent (ε = 5 × 10−2)
is less than about 0.012, and it falls below 10−11 for a ten per-
cent discrepancy. In this case, it will be possible to neglect the
contribution of extraordinary histograms.

Regarding the regular histograms, for which Ωε does not oc-
cur, we have the following result, due to Castellan (2000),

∫ π

−π
inf(s, s0)

[
ln

(
s
s0

)]2

dx � 2Q̃ �
∫ π

−π
sup(s, s0)

[
ln

(
s
s0

)]2

dx.

For the regular histograms considered here, we obviously have
(1 − ε)s0 � inf (s, s0) � sup (s, s0) � (1 + ε)s0, so that, using

1
(1 + ε)2

χ2

p
�

∫ π

−π
s0

[
ln

(
s
s0

)]2

dx �
1

(1 − ε)2

χ2

p
,

which were obtained by Castellan (2000), we conclude that the
phase structure quantity is equivalent to the χ2 statistics of de-
gree12 n − 1, for regular histograms,

aε
χ2

p
� Q̃ � bε

χ2

p
with aε =

1 − ε
2(1 + ε)2

and bε =
1 + ε

2(1 − ε)2
·

For regular histograms, the probability we are concerned with is
therefore subject to the inequality

P
(
{Q̃ > x}

)
� P

({
bε
χ2

p
> x

})
= P

({
χ2 >

2(1 − ε)2 px
1 + ε

})
,

and taking into account both regular and extraordinary his-
tograms, we come up with the upper limit given in the main body
of the paper.
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