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Abstract. We present an analytical study of the statistical properties of integrated emission and velocity centroids for a slightly
compressible turbulent slab model, to retrieve the underlying statistics of three-dimensional density and velocity fluctuations.
Under the assumptions that the density and velocity fields are homogeneous and isotropic, we derive the expressions of the
antenna temperature for an optically thin spectral line observation, and of its successive moments with respect to the line
of sight velocity component, focusing on the zeroth (intensity or integrated emission I) and first (non-normalized velocity
centroid C) moments. The ratio of the latter to the former is the normalized centroid C0, whose expression can be linearized
for small density fluctuations. To describe the statistics of I, C and C0, we derive expansions of their autocorrelation functions
in powers of density fluctuations and perform a lowest-order real-space calculation of their scaling behaviour, assuming that
the density and velocity fields are fractional Brownian motions. We hence confirm, within the scope of this study, the property
recently found numerically by Miville-Deschênes et al. (2003a) that the spectral index of the normalized centroid is equal to
that of the full velocity field. However, it is also argued that, in order to retrieve the velocity statistics, normalization of centroids
may actually not be the best way to remove the influence of density fluctuations. In this respect, we discuss the modified velocity
centroids introduced by Lazarian & Esquivel (2003) as a possible alternative. In a following paper, we shall present numerical
studies aimed at assessing the validity domain of these results.
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1. Introduction

The proper exploitation of astronomical observations requires
one to deal with several problems to accurately describe the
objects and processes under study. In particular, regarding the
physics of the interstellar medium (ISM), it should be stressed
that spectral emission data depends on the velocity field solely
via its component along the line of sight, through Doppler
shifts. Furthermore, this information is necessarily integrated
along the line of sight, and radiative transfer leads to expres-
sions in which the contributions of the density and velocity
fields are mixed in a complex way (Hegmann & Kegel 2000).
Hence, to describe the physical conditions and processes in the
ISM, one has to rely on a single number (e.g. antenna temper-
ature) for any given direction in the plane of the sky and any
given velocity along the line of sight. Although the comparison
of antenna temperatures for various tracers helps, it is neces-
sary to solve an inverse problem to have access to the three-
dimensional properties of the medium, such as density and
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velocity, and compare them with various models, for instance
to assess the roles of gravity, magnetic field or turbulence.

Indeed, it is now recognized that the different components
of the ISM are subjected to turbulent motion. This has been
observed in the ionized gas (Van Langevelde et al. 1992), in
H regions (O’Dell & Castaneda 1987) and in the neutral
atomic phase (Spicker & Feitzinger 1988; Miville-Deschênes
et al. 2003b), but molecular cloud studies are by far the most
numerous (see e.g. Kleiner & Dickman 1985a; Kitamura et al.
1993; Miesch & Bally 1994). Estimates of Reynolds num-
bers from molecular viscosity in these clouds are of the order
of 108, consistent with turbulent flows (Chandrasekhar 1949).
Moreover, molecular lines in this phase exhibit suprathermal
widths over a wide range of spatial scales, from a few km s−1

in small dark clouds to a few tens of km s−1 in giant com-
plexes, while the thermal dispersion is only of about 0.3 km s−1

for molecular hydrogen at T = 10 K. These linewidths scale
as a power-law of the cloud’s size (Larson 1981), with an
exponent close to that predicted by the classical theory of
turbulence (Kolmogorov 1941). Such random motions within
molecular clouds may in turn account for a number of other
properties of spectral lines (Baker 1976), as well as provide
support against gravitational collapse, explaining the fact that
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the lifetime of molecular clouds is larger than their free-fall
time (Scalo 1985) and that the star formation rate is there-
fore much smaller than predicted by gravitationally collapsing
cloud models (Zuckerman & Evans 1974).

Because of this interplay between random motion and
many physical processes at work in the ISM in general
and in the molecular phase in particular, one needs to ac-
curately describe these turbulent flows (see the review by
Vázquez-Semadeni et al. 2000). As noted earlier, this has to
be done using the antenna temperature which represents the
emission from a given direction and at a given velocity, and
so a number of methods were devised to derive the statistical
properties of the three-dimensional fields from those of the ob-
servational data. Among these, the velocity channel analysis
(VCA) of Lazarian & Pogosyan (2000) is based on an ana-
lytical derivation of the properties of channel maps with vary-
ing velocity widths. It may however prove difficult to apply
to actual observations, as shown by Miville-Deschênes et al.
(2003a). The modified velocity centroids (MVC) of Lazarian
& Esquivel (2003) are a recent promising attempt to reduce
the influence of density fluctuations in the statistical proper-
ties of centroids, although it can be argued that they are only
defined through their structure function. As a final example of
velocity statistics retrieval methods, principal component anal-
ysis (PCA), which works on the full position-position-velocity
cubes, is meant to decompose data onto an orthogonal basis
and derive properties of the velocity field at each scale, as cal-
ibrated numerically by Brunt et al. (2003). The main objective
of these works is to relate the scaling behaviour observed in the
two-dimensional maps to scaling laws inferred for the three-
dimensional fields. For instance, Stutzki et al. (1998) showed
that for optically thin media, the spectral index of the inte-
grated emission map is the same as that of the full density
field, provided that the depth probed is larger than the trans-
verse scales considered. In a recent work, Miville-Deschênes
et al. (2003a) used numerical simulations to show that the same
is true for the normalized velocity centroid with respect to
the three-dimensional velocity field. However, this latter result
lacks theoretical support, and it is therefore the goal of this pa-
per to present an analytical study aimed at clarifying the rela-
tionship between the velocity centroids and the velocity field,
within a simple turbulent cloud model.

Given the observational data, one may derive moments of
the antenna temperature profiles, each of these moments yield-
ing a potentially informative two-dimensional map. For in-
stance, the zeroth moment is the integrated emission, or in-
tensity, while the first moment is the velocity centroid, which
can also be normalized to the intensity (Münch 1958; Dickman
& Kleiner 1985b; Miville-Deschênes et al. 2003a). For an op-
tically thin line and uniform excitation conditions, the non-
normalized centroid can be related to the cloud’s total momen-
tum, while the normalized centroid is a measure of average ve-
locity within the medium. While density fluctuations may bias
the description of the turbulent motion (Lazarian & Esquivel
2003), it is however commonly believed, and intuitively plau-
sible, that their effects are somewhat compensated by normal-
ization. To properly assess these, and following Dickman &
Kleiner (1985b) (see also Scalo 1984; Kitamura et al. 1993;

Miesch & Bally 1994), we shall use autocorrelation functions
of the moment maps and relate them to correlation functions
of the underlying three-dimensional fields. To this end, we first
describe the model we shall use and introduce the notations
and assumptions in Sect. 2. We then present a brief summary
of how moments of the line profile can be related to the den-
sity and velocity fields within the medium (Sect. 3). Section 4
contains a general study of the statistical properties of inten-
sity, normalized and non-normalized velocity centroid maps as
functions of the three-dimensional density and velocity fields’
statistics. The equations obtained in the lowest order are then
applied to the test case of fractional Brownian motion (fBm)
density and velocity fields (Sect. 5). Section 6 presents a dis-
cussion of the various results obtained with respect to earlier
works. Our concluding remarks are given in Sect. 7 and details
on the calculations can be found in the appendix.

2. The model

Throughout the paper, boldface notations stand for vector quan-
tities. A point in three-dimensional space is given by its posi-
tion x, which can be written as x = (X, z) = X + zez, where X
is a two-dimensional vector in the plane of the sky and z marks
the line-of-sight position of the point considered, ez being the
unit vector along the line of sight. The three-dimensional sep-
aration between points x1 and x2 is written as r = x2 − x1 and
the separation between their respective lines of sight X1 and X2

is R = X2 − X1. In short, three-dimensional vectors are written
in lowercase, while vectors in the plane of the sky are written
in uppercase. These notations are illustrated in Fig. 1. It should
be emphasized that we shall only consider small scales on the
plane of the sky, so that all lines of sight are parallel.

Hereafter, our model is a slab of gas of width D, perpendic-
ular to the line of sight, and of infinite transverse extensions1,
with z = 0 conventionally placed halfway through the slab (see
Fig. 1). Within the slab, the average density (that is, the average
number of emitters per unit volume taken over the whole slab)
is a constant noted ρ0. As for the velocity u of the gas with re-
spect to the observer, we shall write v to stand for its component
along the line of sight, the mean value of which over the slab
is v0. These averages (ρ0 and v0) are obviously constants, inde-
pendent of the line of sight. To assume the most general case,
we shall take v0 to be nonzero2. The gas velocity within the rest
frame of the cloud is simply δu = u−v0ez, assuming that there is
no systematic transverse velocity. Furthermore, fluctuations of
density along any given line of sight are supposed to be small
compared to the average value ρ0, in the sense that the standard
deviation of the density field should be less than ρ0. It is also
assumed that the turbulent flow within the slab is homogeneous
and isotropic. These last hypotheses are to be understood in the
strong sense of Monin & Yaglom (1975): not only are the scalar

1 This is in no way contradictory with the assumption that all lines
of sight considered are parallel. The cloud is supposed to be infinite,
but only a small fraction of it is observed and supposed to be repre-
sentative of the whole.

2 The case v0 = 0 is only special in the way the calculations are
performed, as the end result amounts to setting v0 to zero in the general
formulæ. This is shown in Appendix B.
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Fig. 1. Notations used in the paper (left) and schematics of the turbulent slab model (right). A lowercase boldface letter stands for a three-
dimensional vector, while the corresponding uppercase represents its projection on the plane of the sky (xOy). The slab is infinite in the x and
y directions and is limited to ID = [−D/2,D/2] in the z direction. The density ρ and line-of-sight velocity v distributions along a line of sight
are shown on the right. The mean values ρ0 and v0 are taken over the whole slab.

field ρ and the vector field δu homogeneous and isotropic, but
the same should apply to the four-dimensional field (ρ, δu). This
will be useful in the derivation of our results in Sect. 4. Outside
the slab, the density and velocity are set to zero. We further as-
sume that the observation is done in an optically thin transition,
at a frequency for which the Rayleigh-Jeans approximation is
valid, that uniform excitation conditions apply within the slab,
and that no background radiation is present.

With these assumptions in mind, the antenna temperature
Ta(X, u) representing the emission from a given line of sight
X at an observed velocity u can be written as the integral
(Dickman & Kleiner 1985b),

Ta(X, u) =
∫
ID

Tex(x)κ0(x)φ(v(x) − u)dz, (1)

where ID is the segment [−D/2,D/2] over which the integra-
tion is performed. At each position x, Tex is the excitation tem-
perature and κ0 is the integrated absorption coefficient. The nor-
malized line profile function φ is assumed to be symmetrical
about zero and independent of x. For instance, if one only con-
siders thermal broadening, φ takes the form

φ(w) =
1√

2πσth

exp

− w2

2σ2
th

, (2)

with σth the thermal velocity dispersion. The shifted argument
v(x) − u of φ in Eq. (1) simply expresses the fact that the emis-
sion at position x is broadened around the local line of sight
velocity v(x). Assuming uniform excitation conditions, Tex is a
constant, and κ0(x) is proportional to the local gas density ρ(x),
so we can write

Ta(X, u) =
∫
ID

αρ(x)φ(v(x) − u)dz, (3)

where α is a proportionality constant. The expression in Eq. (3)
shows that, even under simplifying assumptions, the task of ex-
tracting properties of the density and velocity fields from the
observational data Ta(X, u) is a difficult one.

3. Velocity moments

In order to obtain information about the velocity field proper-
ties from the data sets, one may compute the various moments
of the antenna temperature profiles Ta(X, u) for a given line
of sight X. This is a logical step considering that knowledge
of the moments of a random variable is equivalent to that of
the full probability distribution. We shall therefore consider the
moment maps Wn(X) defined by

Wn(X) =
∫

unTa(X, u)du. (4)

The integration is done over all velocities from−∞ to∞, which
poses no convergence problem since the line profile has a finite
support3. Using Eq. (3) to express Ta as a function of the local
line profile and of the density,

Wn(X) =
∫

un

α
∫
ID

ρ(x)φ(v(x) − u)dz

 du

= α

∫
ID

ρ(x)


∫

(v(x) − w)n φ(w)dw

dz, (5)

where we introduced the variable w = v(x) − u. Developing
the integrand in the innermost integral, and since the local line

3 If any continuum emission is present, it should first be removed.
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profile φ is assumed to be independent of the position x, we get
the following expression

Wn(X) = α
n∑

k=0

(−1)kCk
n


∫
ID

ρ(x)vn−k(x)dz



∫
wkφ(w)dw


=

n∑
k=0

Ck
nhk


∫
ID

ρ(x)vn−k(x)dz

 , (6)

where the Ck
n are the binomial’s coefficients and the hk are re-

lated to the moments of the normalized line profile φ,

hk = (−1)kα

∫
wkφ(w)dw. (7)

It should be noted that the assumed evenness of φ leads
to h2p+1 = 0. The first two moments are of particuler inter-
est, since, by definition, they are the total emergent intensity I
and the non-normalized velocity centroid C, respectively,

I(X) = W0(X) = α
∫
ID

ρ(x)dz = αN(X)

and

C(X) = W1(X) = α
∫
ID

ρ(x)v(x)dz. (8)

Here, N(X) is the column density at position X. In the rest of
this paper, we shall only consider the intensity and the velocity
centroid. The use of higher order moments would theoretically
give access to more information about the structures of the den-
sity and velocity fields, but, in practice, noise levels and limited
spectral resolution may very well jeopardize their usefulness.

4. Statistics of intensity and centroid maps

4.1. Rationale of the computations

We may use the line profile moments defined above to quantify
the structure of the turbulent flow within the slab. Obviously,
the zeroth moment W0(X) = I(X) can only be used to derive
statistics of the density field, as it is proportional to the col-
umn density N(X). The first moment or non-normalized veloc-
ity centroid W1(X) = C(X) is the first appropriate quantity to
study the velocity field, as can be seen from Eq. (8). However,
C(X) represents the integration of a momentum, rather than of
a velocity proper, and it appears that density fluctuations may
affect the estimation of the velocity statistics from this map. To
circumvent this problem, it is common to use normalized cen-
troids C0(X), which are simply defined as the ratio C(X)/I(X).
This is usually and empirically justified by the assumption that
density fluctuations in C(X) are also present in I(X) and there-
fore somehow vanish from C0(X). In the simplified case where
density does not fluctuate along the line of sight, such a reason-
ing is obviously correct, even if transverse density fluctuations
are present, and normalization then only serves as a dimen-
sionality factor. As far as we are aware, however, no analytical
study exists of the influence of longitudinal fluctuations of den-
sity on velocity centroids, even in the quite simplified model
used here.

Now, in order to gain a better understanding of the
underlying three-dimensional statistics of the velocity field
through velocity centroids, it seems natural to consider the
two-dimensional statistics of the centroid maps. Indeed, struc-
tural properties of the velocity and density fields should arise,
under one form or another, in statistical measures performed
on the maps C(X) and C0(X). Of course, it is similarly rea-
sonable to look for the influence of density structure in the
statistics of the intensity map I(X). One such useful measure
to be performed on the available two-dimensional maps is the
autocorrelation function (ACF), which gives the mean degree
of correlation between values of a field taken at points sep-
arated on the plane of the sky by a given vector R (Kleiner
& Dickman 1984). More precisely, the autocorrelation func-
tion AF of a field F is defined by

AF (R) = 〈F (X)F (X + R)〉 , (9)

where the brackets stand for a spatial average over position X
in the plane of the sky. Hereafter, we shall consider the au-
tocorrelation functions of the intensity and of both types of
centroid, respectively noted AI(R), AC(R) and AC0 (R), and
compute them as functions of statistical measures of the three-
dimensional density and velocity fields. In order to do so,
we first separate mean and fluctuating contributions of den-
sity and velocity in the quantities involved, with ρ = ρ0 + δρ
and v = v0 + δv. These expressions can be used to write the first
two moment maps as

I(X) =
∫
ID

αρ(X, z)dz = αρ0D
[
1 + yρX

]
and

C(X)=
∫
ID

αρ(X, z)v(X, z)dz=αρ0v0D
[
1+yρX+yvX+yρvX

]
, (10)

where we have introduced the following integrated fluctuation
terms4

yρX =
1
D

∫
ID

δρ(X, z)
ρ0

dz, yvX =
1
D

∫
ID

δv(X, z)
v0

dz

and

yρvX =
1
D

∫
ID

δρ(X, z)
ρ0

δv(X, z)
v0

dz. (11)

The normalized centroid C0 is then simply written as

C0(X) =
C(X)
I(X)

= v0
1 + yρX + yvX + yρvX

1 + yρX

· (12)

This last expression can be used to clarify the usefulness of
the small fluctuations hypothesis. Indeed, for a perturbative
method to be applicable in the computation of the autocorre-
lation function of the normalized velocity centroid map, one
should be able to linearize Eq. (12), and therefore we need to

4 In these integrated fluctuation terms, we chose to denote the posi-
tion X on the plane of the sky as a subindex, rather than as an argu-
ment, to allow for concise equations in the subsequent developments.
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assume that |yρX | < 1, so that the denominator can be expanded
as a converging series,

1
1 + yρX

= 1 − yρX + y
2
ρX
. . . =

∑
n�0

(−yρX )n. (13)

Such a condition is obviously achieved if local density fluctu-
ations themselves are small in the sense, expressed in Sect. 2,
that the standard deviation of the density field σρ should be
smaller than the average density ρ0, since

|yρX | =
∣∣∣∣∣∣∣∣∣
1
D

∫
ID

δρ(X, z)
ρ0

dz

∣∣∣∣∣∣∣∣∣ �
√√√√ 1

D

∫
ID

(
δρ(X, z)
ρ0

)2

dz

�
√√
δρ2

ρ2
0

=
σρ

ρ0
· (14)

The identification of the mean squared density fluctuations
along a single line of sight with the variance σ2

ρ of the whole
density field is based on the homogeneity hypothesis. Indeed,
any line of sight should statistically represent the full field.
Although the stronger assumption σρ < ρ0 is not strictly nec-
essary for the linearization mentioned earlier, it is useful in the
expansion of the autocorrelation functions since, in this case,
the hybrid integrated fluctuation term yρvX is of the same order
in density as yρX ,

|yρvX | �
√√√√ 1

D

∫
ID

(
δρ(X, z)
ρ0

)2

dz

√√√√ 1
D

∫
ID

(
δv(X, z)
v0

)2

dz

� σρ
ρ0

σv
v0
, (15)

where we used the Cauchy-Schwarz inequality and introduced
the standard deviation σv of the line-of-sight component of the
velocity field5. This allows us to develop the intensity and the
velocity centroid maps, as well as their autocorrelation func-
tions, according to the powers of σρ/ρ0. It should be made
clear that the expansion in Eq. (13) is not necessarily true for
real data, but that it is used here as a reasonable first step to-
wards understanding the effects of realistic density fluctuations
on velocity centroids.

4.2. Autocorrelation function of the intensity I

Taking the autocorrelation function AI(R) of the intensity map
I(X), and using the linearity property of averages, we have
terms of order up to two in density fluctuations, namely

AI(R) = (αρ0D)2
[
1 +

〈
yρX

〉
+

〈
yρX+R

〉
+

〈
yρXyρX+R

〉]
, (16)

where we recall that the brackets stand for an average over X.
These are performed on quantities integrated over z, and can

5 It should be stressed that no hypothesis is made on the strength
of velocity fluctuations, so that scaling them to the mean velocity v0
is merely a convenient way to symmetrize expressions, and should
not be given too much importance. We are aware, however, that the
sound speed would be a much more physically meaningful velocity
scale, and it will be used as such when the mean velocity is zero (see
Appendix B).

therefore be interpreted as averages over the whole turbulent
slab. Indeed, if one considers a three-dimensional field f (x), its
integrated map F(X) defined by

F(X) =
1
D

∫
ID

f (X, z)dz

has an average

〈F(X)〉 = 1
D

∫
ID

〈 f (X, z)〉 dz =
1

DS

∫∫∫
f (x)dx (17)

over a surface S of the sky. The quantity 〈F(X)〉 can then be
seen as an average of f over the volume DS , and, assuming er-
godicity, it can also be identifid with the ensemble average f (x)
at any given position x within the flow. In the present case, the
term

〈
yρX

〉
, which is of the first order in density fluctuations,

can be written as〈
yρX

〉
=

1
ρ0D

∫
ID

〈δρ(X, z)〉 dz =
1
ρ0
δρ(x) = 0, (18)

since, by definition, the average of the density fluctuations over
the whole volume of the slab is zero. The assumption of homo-
geneity allows one to write that

〈
yρX+R

〉
= 0 as well. As for the

second order term, which reads

〈
yρXyρX+R

〉
=

1

ρ2
0D2

〈
∫
ID

δρ(X, z)dz



∫
ID

δρ(X + R, z)dz


〉

=
1

ρ2
0D2

∫∫
I2
D

〈δρ(X, z1)δρ(X + R, z2)〉 dz1dz2, (19)

and where I2
D is the square domain ID × ID, it includes an av-

erage over X that, following the idea used above, should be
replaced by an ensemble average characteristic of the turbulent
flow. Indeed, one can see that

〈δρ(X, z1)δρ(X + R, z2)〉 = δρ(x1)δρ(x2), (20)

with the three-dimensional vectors x1 = (X, z1) and x2 =

(X+ R, z2). Introducing the autocorrelation function Bρ,ρ of the
density fluctuations, which is defined, for any pair of points
(x, x + r) within the slab, by6

Bρ,ρ(r) = δρ(x)δρ(x + r), (21)

we therefore can write the term under study as

〈
yρXyρX+R

〉
=

1

ρ2
0D2

∫∫
I2
D

Bρ,ρ(x2 − x1)dz1dz2

or, more concisely,〈
yρXyρX+R

〉
=

1

ρ2
0

Mρ,ρ(R), (22)

6 We chose to write Bρ,ρ instead of using the more consistent no-
tation Aδρ for the autocorrelation function of the density fluctuations,
because, in the following developments, higher order and multipoint
correlation functions of mixed fields arise for which the AF notation
would have become cumbersome.
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Fig. 2. Interpretation of the average Mρ,ρ appearing in Eq. (23). The slab is viewed edge-on in the left figure, and face-on in the right. The value
of Mρ,ρ at any lag R is the average of the correlation function Bρ,ρ over all pairs of points whose projected separation on the plane of the sky is
R. Three such pairs are presented on the left.

where Mρ,ρ(R), which is defined by the double integral

Mρ,ρ(R) =
1

D2

∫∫
I2
D

Bρ,ρ(R + (z2 − z1)ez)dz1dz2, (23)

is interpreted as an average of Bρ,ρ(r) taken over all pairs of
points within the slab whose three-dimensional separation r has
the given vector R for component in the plane of the sky (see
Fig. 2). Eventually, the autocorrelation function of the intensity
simply reads

AI(R) = (αD)2
[
ρ2

0 + Mρ,ρ(R)
]
. (24)

This expression will be exploited later on when compared with
the autocorrelation functions of velocity centroids.

4.3. Autocorrelation function of the non-normalized
velocity centroid C

The same general method applies when considering the non-
normalized velocity centroid C(X). Its expansion, written in
Eq. (10), includes terms of order zero and one in density fluc-
tuations. Therefore, its autocorrelation function AC(R) features
terms of order up to two. Namely,

AC(R) = (αρ0v0D)2
〈[

1 + yvX + yρX + yρvX
]

×
[
1 + yvX+R + yρX+R + yρvX+R

]〉
= (αρ0v0D)2

2∑
n=0

〈an〉 , (25)

where an is a term of order n in density. The explicit forms of
these coefficients are given by

a0 = 1 + yvX + yvX+R + yvXyvX+R ,
a1 = yρX + yρX+R + yρXyvX+R + yvXyρX+R

+yρvX + yρvX+R + yρvXyvX+R + yρvX+RyvX ,
a2 = yρXyρX+R + yρvXyρX+R + yρvX+RyρX + yρvXyρvX+R .

(26)

The linearity of the averaging process over the plane of the sky
implies then that we should consider terms of the form

〈
yλX

〉

and
〈
yλXyµX+R

〉
, where λ and µ represent either ρ, v or ρv. Due

to the homogeneity hypothesis, terms of the form
〈
yλX+R

〉
are

of course equal to
〈
yλX

〉
, and so, considering the zeroth order

contribution 〈a0〉, we have

〈a0〉 = 1 + 2
〈
yvX

〉
+

〈
yvXyvX+R

〉
= 1 +

2
v0
δv(x) +

1

v20
Mv,v(R) = 1 +

1

v20
Mv,v(R), (27)

with Mv,v(R) being defined similarly to Mρ,ρ(R) in Eq. (23),

Mv,v(R) =
1

D2

∫∫
I2
D

Bv,v(R + (z2 − z1)ez)dz1dz2, (28)

and Bv,v(r) = δv(x)δv(x + r) is the autocorrelation function
of the fluctuations of the line-of-sight velocity component.
Turning to the first order term, we have, since

〈
yρX

〉
=

〈
yρX+R

〉
=

0 as shown in the previous section,

〈a1〉 =
〈
yρXyvX+R

〉
+

〈
yvXyρX+R

〉
+ 2

〈
yρvX

〉
+

〈
yρvXyvX+R

〉
+

〈
yρvX+RyvX

〉
. (29)

Each term in this equation can be related to correlation func-
tions of the fluctuation fields δρ and δv, beginning with〈
yρXyvX+R

〉
=

1
ρ0v0D2

∫∫
I2
D

〈δρ(X, z1)δv(X + R, z2)〉 dz1dz2

=
1

ρ0v0D2

∫∫
I2
D

Bρ,v(R + (z2 − z1)ez)dz1dz2, (30)

introducing the mixed correlation function Bρ,v(r) =

δρ(x)δv(x + r). Considering the next term
〈
yvXyρX+R

〉
, the ho-

mogeneity hypothesis allows us to shift the arguments by −R
so that, exchanging the integration variables,〈
yvXyρX+R

〉
=

〈
yρXyvX−R

〉
=

1
ρ0v0D2

∫∫
I2
D

Bρ,v (−R + (z1 − z2) ez) dz1dz2, (31)
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Combination of both terms leads to〈
yvXyρX+R

〉
+

〈
yρXyvX+R

〉
=

1
ρ0v0D2

∫∫
I2
D

[
Bρ,v(R + (z2 − z1)ez)

+Bρ,v(−R+(z1 − z2)ez)
]

dz1dz2. (32)

Now, according to Monin & Yaglom (1975), and assuming that
the four-dimensional field (ρ, δu), made up of the density ρ and
vector velocity δu, is homogeneous and isotropic, the correla-
tion function of ρ and δu is a vector quantity, and due to isotropy
should be along the separation vector r. It should therefore be
of the form ρ(x)δu(x + r) = f (r)r, so that, projecting this rela-
tion on ez, we have

f (r)r.ez = ρ(x)δu(x + r).ez = δρ(x)δu(x + r).ez

= δρ(x)δv(x + r) = Bρ,v(r), (33)

using the fact that δu(x) = 0. As a consequence, we have
Bρ,v(−r) = − f (r)r.ez = −Bρ,v(r), so that Bρ,v is an antisym-
metric field. Of course, this is a statistical property, and does
not hold when considering the specific values of velocity and
density fluctuations for a given pair of points within the flow.
What one can conclude is that the integrand in Eq. (32) is zero,
and so

〈
yvXyρX+R

〉
+

〈
yρXyvX+R

〉
= 0. So is the next term

〈
yρvX

〉
,

since〈
yρvX

〉
=

1
ρ0v0D

∫
ID

〈δρ(X, z)δv(X, z)〉 dz

=
1
ρ0v0D

∫
ID

Bρ,v(0)dz = 0, (34)

because the antisymmetry of Bρ,v implies that Bρ,v(0) = 0.
Similarly, the last two terms of 〈a1〉 are given by

〈
yρvXyvX+R

〉
+

〈
yρvX+RyvX

〉
=

1

ρ0v
2
0D2

∫∫
I2
D

[
Bρv,v(R + (z2 − z1)ez)

+Bρv,v(−R + (z1 − z2)ez)
]

dz1dz2, (35)

introducing the two-point correlation function Bρv,v(r) =

δρ(x)δv(x)δv(x + r). This last combination of terms, unlike the
one considered previously, is not necessarily zero. According
to Monin & Yaglom (1975), it is of the form

Bρv,v(r) = g(r)
(r.ez)2

r2
+ h(r), (36)

where g and h are functions of the scalar separation r. This
form stems from the fact that δρ(x)δvi(x)δv j(x + r), where i
and j stand for any of the x, y and z coordinates, is a tensor
of rank 2 which we suppose to be homogeneous and isotropic.
It follows that Bρv,v is symmetric, and so, using an averag-
ing notation Mρv,v defined, similarly to the expressions of Mρ,ρ
and Mv,v, by

Mρv,v(R) =
1

D2

∫∫
I2
D

Bρv,v(R + (z2 − z1)ez)dz1dz2, (37)

we can write 〈a1〉, contribution of the first order in density fluc-
tuations to the autocorrelation function AC , as

〈a1〉 =
〈
yρvXyvX+R

〉
+

〈
yρvX+RyvX

〉
=

1

ρ0v
2
0

[
Mρv,v(R) + Mρv,v(−R)

]

=
2

ρ0v
2
0

Mρv,v(R). (38)

Lastly, the second order term in density fluctuations 〈a2〉 =〈
yρXyρX+R

〉
+

〈
yρvXyρX+R

〉
+

〈
yρvX+RyρX

〉
+

〈
yρvXyρvX+R

〉
is computed

in much the same way, introducing the two-point correlation
functions

Bρv,ρ(r) = δρ(x)δv(x)δρ(x + r)

and

Bρv,ρv(r) = δρ(x)δv(x)δρ(x + r)δv(x + r), (39)

and their averages defined by

Mρv,ρ(R) =
1

D2

∫∫
I2
D

Bρv,ρ(R + (z2 − z1)ez)dz1dz2

and

Mρv,ρv(R) =
1

D2

∫∫
I2
D

Bρv,ρv(R + (z2 − z1)ez)dz1dz2. (40)

With these notations, it is straightforward to derive the expres-
sion of the second order term,

〈a2〉 = 1

ρ2
0

Mρ,ρ(R) +
2
v0

M(s)
ρv,ρ(R) +

1

v20
Mρv,ρv(R)

 , (41)

with the (s) superscript indicating the symmetric part of a given
function, defined by the relation

f (s)(x) =
1
2

[
f (x) + f (−x)

]
. (42)

Now, still following Monin & Yaglom (1975), Bρv,ρ exhibits
the same antisymmetry property as Bρ,v and we can conclude
that the symmetric part of Mρv,ρ(R) is zero, so that the autocor-
relation function AC of the non-normalized velocity centroid
eventually reads

AC(R) = (αD)2
[
ρ2

0v
2
0 + ρ

2
0 Mv,v(R) + 2ρ0Mρv,v(R)

+v20Mρ,ρ(R) + Mρv,ρv(R)
]
. (43)

When considering only the zeroth order in density fluctuations,
one finds that the expression of AC(R) is very similar to that
of AI(R), with AC(R) � (αDρ0)2

[
v20 + Mv,v(R)

]
. This is not sur-

prising, as we shall discuss in Sect. 6. Moreover, as the forth-
coming comparison of the autocorrelation functions of both
normalized and non-normalized velocity centroids will be per-
formed on expressions of order up to one only, it is useful to
write out the truncation of AC(R) at that order, which is, given
Eq. (43),

AC(R) = (αD)2
[
ρ2

0v
2
0 + ρ

2
0 Mv,v(R) + 2ρ0Mρv,v(R)

]
. (44)
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4.4. Autocorrelation function of the normalized velocity
centroid C0

There is little qualitative change to the method when dealing
with the normalized centroid. Contributions of each order can
be computed as easily as for the non-normalized case, with
the main difference being that, given the expansion written in
Eq. (13), AC0 (R) is a theoretically infinite series which reads

AC0 (R)=v20

〈∑
p,q

(−1)p+qy
p
ρX
y

q
ρX+R




2∑
n=0

an


〉
=v20

∑
m

2∑
n=0

〈anbm〉

with

bm = (−1)m
m∑

p=0

y
p
ρX
y

m−p
ρX+R
, (45)

the generic term 〈anbm〉 obviously being of order n + m in
density fluctuations. Now, given that the highest order present
in AC(R) is two, it seems reasonable to consider only terms of
order at most two in the expansion. However, it may also be
argued that, since density fluctuations effectively contribute to
the first order in the expression of AC(R), assessing the effects
of normalization may already be performed when limiting the
expansion to that order,

AC0 (R) = v20 [〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉] = v20 (S 0 + S 1)

with S 0 = 〈a0b0〉 and S 1 = 〈a0b1〉 + 〈a1b0〉 . (46)

Now, the zeroth order term in AC0 (R) has been computed in the
previous subsection,

S 0 = 〈a0b0〉 = 〈a0〉 = 1 +
1

v20
Mv,v(R), (47)

so we turn to the first order term S 1 = 〈a0b1〉 + 〈a1b0〉 which
reads, after a long but straightforward calculation,

S 1 = 2
〈
yρvX

〉
− 2

〈
yρXyvX

〉
+

〈
yρvXyvX+R

〉
+

〈
yvXyρvX+R

〉
−

〈
yvXyvX+RyρX

〉
−

〈
yvXyvX+RyρX+R

〉
. (48)

The first term is zero, as shown before. So is the second term,
for we have〈
yρXyvX

〉
=

1
ρ0v0D2

∫∫
I2
D

Bρ,v ((z2 − z1) ez) dz1dz2 = 0, (49)

since the integration domain is symmetric about z2 − z1 = 0
and Bρ,v is antisymmetric. The combination of third and fourth
terms has been computed in the previous subsection

〈
yρvXyvX+R

〉
+

〈
yρvX+RyvX

〉
=

2

ρ0v
2
0

Mρv,v(R). (50)

The remaining terms require a more elaborate, although simi-
lar, treatment. Taking for instance the last term, we have

〈
yvXyvX+RyρX+R

〉
=

1

ρ0v
2
0D3

∫∫∫
I3
D

〈δv (X, z1) δv (X + R, z2)

×δρ (X + R, z3)〉 dz1dz2dz3, (51)

where the integration is performed over the cubic domain I3
D =

ID × ID × ID. Introducing the three-point correlation function
Bv,v,ρ(r1, r2) = δv(x)δv(x + r1)δρ(x + r2), this expression reads〈
yvXyvX+RyρX+R

〉
=

1

ρ0v
2
0D3

×
∫∫∫

I3
D

Bv,v,ρ(R + (z2 − z1)ez, R + (z3 − z1)ez)dz1dz2dz3

=
1

ρ0v
2
0

Mv,v,ρ(R, R), (52)

with an averaging notation Mv,v,ρ(R, R) reminiscent of the ones
used previously,

Mv,v,ρ(R, R) =
1

D3

×
∫∫∫

I3
D

Bv,v,ρ(R + (z2 − z1)ez, R + (z3 − z1)ez)dz1dz2dz3.(53)

Similarly, the next-to-last term can be written as〈
yvXyvX+RyρX

〉
=

1

ρ0v
2
0

Mv,v,ρ(−R,−R)

so that〈
yvXyvX+RyρX+R

〉
+

〈
yvXyvX+RyρX

〉
=

2

ρ0v
2
0

M(s)
v,v,ρ(R, R), (54)

with M(s)
v,v,ρ(R, R) being the symmetric part of the function

Mv,v,ρ(R, R),

M(s)
v,v,ρ(R, R) =

1
2

[
Mv,v,ρ(R, R) + Mv,v,ρ(−R,−R)

]
. (55)

Finally, the autocorrelation function AC0 (R) of the normalized
centroid has the following expression when limited to contri-
butions of the first order in density fluctuations,

AC0 (R) = v20 + Mv,v(R) +
2
ρ0

[
Mρv,v(R) − M(s)

v,v,ρ(R, R)
]
. (56)

It appears then that normalization of velocity centroids indeed
performs a first order correction, as compared with Eq. (44),
although it does not necessarily fully remove the density struc-
ture, as will be discussed in more detail in Sect. 6.

5. The case of fractional Brownian motion fields

Explicitly computing the forms of the two-dimensional statis-
tical measures AI(R), AC(R) and AC0 (R) requires the knowl-
edge of the three-dimensional correlation functions appearing
as integrated terms in Eqs. (24), (44) and (56). However, it may
prove impossibly difficult to build a complete and consistent
set of such functions and then to analytically compute their av-
erages. Therefore, as a first step, one should stick to the lowest
order terms in the expressions of the two-dimensional autocor-
relation functions,

AI(R) = (αD)2
[
ρ2

0 + Mρ,ρ(R)
]
,

AC(R) � (αDρ0)2
[
v20 + Mv,v(R)

]
and

AC0 (R) � v20 + Mv,v(R). (57)
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In this limit, one only has to compute the Mρ,ρ(R) and Mv,v(R)
averages given density and velocity fields with known auto-
correlation functions Bρ,ρ(r) and Bv,v(r). One possibility is to
suppose that both of the three-dimensional fields are fractional
Brownian motions (fBm). These are defined in the following
way: if F is such a field in N dimensions, it is characterized by
a single-index power-law structure function,

S F (r) = [F (x + r) − F (x)]2 = 2Λ
( r

D

)2H

, (58)

where r = |r| is the length of the separation vector, Λ is a
positive constant and H is a real number in [0, 1] called the
Hurst exponent. The restriction H � 0 corresponds to the fact
that the amplitude of fluctuations should decrease at smaller
scale, while we impose H � 1 because an fBm field hav-
ing a Hurst exponent H > 1 would be uniform, as shown
in Appendix D. Fractional Brownian motion fields have al-
ready been used (Stutzki et al. 1998; Brunt & Heyer 2002;
Miville-Deschênes et al. 2003a) to model clouds of the diffuse,
non-starforming interstellar medium. In this section, we shall
use them to model the three-dimensional density and velocity
fields, so that, for the former,

S ρ(r) =
[
ρ(x + r) − ρ(x)

]2
=

[
δρ(x + r) − δρ(x)

]2

= 2
[
σ2
ρ − Bρ,ρ(r)

]
= 2Λρ

( r
D

)2Hρ
, (59)

since the density fluctuations field is supposed to be homoge-
neous. Similarly, for the velocity field,

S v(r) = [v(x + r) − v(x)]2 = [δv(x + r) − δv(x)]2

= 2
[
σ2
v − Bv,v(r)

]
= 2Λv

( r
D

)2Hv
. (60)

These last two equations make use of the relationship be-
tween the second order structure function S F of an homoge-
neous field F and its autocorrelation function AF , which is
S F (R) = 2 [AF (0) − AF (R)]. In the results of Sect. 4, we then
have to inject the following relations

Bρ,ρ(r) = σ2
ρ − Λρ

( r
D

)2Hρ

and

Bv,v(r) = σ2
v − Λv

( r
D

)2Hv
. (61)

To compute the averages Mv,v(R) and Mρ,ρ(R) featured in the
expressions of AI(R), AC(R) and AC0 (R), we can use the cal-
culation scheme of Chandrasekhar & Münch (1952), which is
given in Appendix A, to write them as single integrals over
the separation ∆z = z2 − z1 along the line of sight, noting that
∆z ∈ I2D = [−D,D]. We then have

Mv,v(R) =
1

D2

∫
I2D

(D − |∆z|) Bv,v (R + ∆zez) d∆z

and

Mρ,ρ(R) =
1

D2

∫
I2D

(D − |∆z|)Bρ,ρ (R + ∆zez) d∆z. (62)

In these expressions, the factor (D− |∆z|) represents the weight
of each separation ∆z, that is the relative number of pairs of

points taken into account whose projected separation along the
line of sight is ∆z. With the expressions above for Bv,v and Bρ,ρ,
it is possible, as shown in Appendix C, to write these averages
under the form

Mv,v(R) = −ΛvK(R,Hv) + σ2
v

and

Mρ,ρ(R) = −ΛρK(R,Hρ) + σ2
ρ, (63)

where R = |R| is the scalar separation on the plane of the sky,
and the function K is given by

K(R,H) =
2

D2H+1

∫ D

0

(
R2 + z2

)H
dz

− 1
H + 1


(
1 +

R2

D2

)H+1

−
(

R2

D2

)H+1 . (64)

The integral in Eq. (64) cannot be explicited (Gradshteyn &
Ryzhik 1980) unless H = 0 or H = 1, but one interesting limit
to consider is that of small separations on the plane of the sky
(R � D), in which case K(R,H) can be developed in powers
of R/D. As shown in Appendix C, this yields the following
scaling relations for Mv,v(R)

Mv,v(R) � σ2
v − Λva(Hv) − Λvb(Hv)

( R
D

)2Hv+1

for 0 � Hv <
1
2
, (65)

Mv,v(R) � σ2
v − Λva(Hv) − Λvb(Hv)

( R
D

)2

for
1
2
< Hv � 1, (66)

Mv,v(R) � σ2
v −
Λv

3
+ Λv

( R
D

)2

ln
( R

D

)
for Hv =

1
2
, (67)

where a and b are functions of Hv only. Similar relations are
satisfied by Mρ,ρ(R) depending on the value of Hρ. To the low-
est order, the structure function S C0 (R) of the normalized cen-
troid C0 therefore reads

S C0 (R) = 2Λvb(Hv)
( R

D

)2Hv+1

for 0 � Hv <
1
2
, (68)

S C0 (R) = 2Λvb(Hv)
( R

D

)2

for
1
2
< Hv � 1, (69)

S C0 (R) = −2Λv
( R

D

)2

ln
( R

D

)
for Hv =

1
2
· (70)

According to Eq. (57), the structure function S C of the non-
normalized velocity centroid has the same scaling behaviour.
This is also the case for the structure function S I of the inten-
sity, depending on the value of Hρ. The consequences of such
forms are presented in the next section.
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6. Discussion

As expected, the statistical measures on the intensity and cen-
troid maps can be expressed in terms of the statistical proper-
ties of the underlying three-dimensional velocity and density
fields. More precisely, it should come as no surprise that the
autocorrelation functions AI(R), AC(R) and AC0 (R) should be
written as averages of correlation functions within the slab in
the manner described in Fig. 2, since all pairs of points with a
given separation R in the plane of the sky should contribute to
the two-dimensional statistical measures at lag R.

It also appears that the zeroth order term in the autocorre-
lation functions of the velocity centroids has the same form as
the autocorrelation of the intensity map, since we then have

AC(R) � (αρ0D)2AC0 (R) � (αρ0D)2
[
v20 + Mv,v(R)

]
while

AI(R) = (αD)2
[
ρ2

0 + Mρ,ρ(R)
]
. (71)

The identity of these forms was to be expected, since the ze-
roth order terms in the autocorrelation functions of the velocity
centroids are the limits obtained when the density is uniform.
In this case, the centroids simply are integrals of v, as the inten-
sity is a simple integral of ρ. In the context of fBm fields, the
implication of this limit is that both non-normalized and nor-
malized velocity centroids have a fractional Brownian motion
behaviour, since their structure functions are power laws, with
respective Hurst exponents HC and HC0 such that

HC = HC0 = Hv +
1
2

for 0 � Hv <
1
2

and

HC = HC0 = 1 for
1
2
< Hv � 1. (72)

And similarly, the intensity map has a fractional Brownian mo-
tion behaviour with a Hurst exponent HI with

HI = Hρ +
1
2

for 0 � Hρ <
1
2

and

HI = 1 for
1
2
< Hρ � 1. (73)

These results should be interpreted in the light of what is al-
ready known about the statistical properties of the integrated
emission map I from studies in the Fourier domain. Indeed, in
the case of optically thin lines, the power spectrum index γI of
the intensity map is the same as that of the three-dimensional
density field γρ (see e.g. Goldman 2000) provided the depth
probed D is larger than the transverse scales R, which is the
case in the limit considered in Sect. 5. Now, spectral index γ
and Hurst exponent H are related by γ = 2H + N, with N the
dimension of the space over which the field is defined. As a
result, Stutzki et al. (1998) concluded that the Hurst exponent
of the integrated emission map is HI = Hρ + 1/2 for Hρ � 1/2
with a turnover to HI = 1 for Hρ � 1/2, since

HI =
γI − 2

2
=
γρ − 3

2
+

1
2
= Hρ +

1
2
, (74)

using the fact that the integrated emission map is two-
dimensional, while the original density field is three-
dimensional. This result is precisely what we find from our
analytical study performed solely in real space. Similarly, the
expression for the structure function of the normalized centroid
confirms the numerical findings of Miville-Deschênes et al.
(2003a), who showed that the spectral index γC0 of normalized
centroid maps was equal to that of the three-dimensional ve-
locity field, γv. It should be noted that their result holds even
for density fields with large fluctuations, which implies that
our analytical result may be applicable to a more general class
of fields. On the other hand, in the limit of negligible density
fluctuations, one should find the same behaviour for the non-
normalized centroid, a result Miville-Deschênes et al. (2003a)
have not reported on.

Returning to a study of the autocorrelation functions of ve-
locity centroids in the first order approximation,

AC(R) � (αDρ0)2

[
v20 + Mv,v(R) +

2
ρ0

Mρv,v(R)

]
and

AC0 (R) � v20 + Mv,v(R) +
2
ρ0

[
Mρv,v(R) − M(s)

v,v,ρ(R, R)
]
,

we see that, since Mρv,v(R) − M(s)
v,v,ρ(R, R) is not necessarily

zero, normalization actually does not remove the first order
contribution of density fluctuations. The empirical assumption
that normalization somehow eliminates the influence of den-
sity fluctuations on velocity centroids may therefore not be
true, although assessing the magnitude of the remaining first
order contribution in the normalized centroid’s autocorrelation
function with respect to the non-normalized case could be diffi-
cult, as it involves computing averages of correlation functions
whose forms are still unknown. This will be investigated in a
forthcoming paper.

Such shortcomings of the normalized centroids as a way
to retrieve the actual velocity statistics from the observational
data have already been pointed out by Lazarian & Esquivel
(2003), albeit in the case of simulations of highly compress-
ible MHD turbulence. Instead, they introduced modified veloc-
ity centroids (MVC) Cm, defined through their second order
structure function S Cm as

S Cm (R) =
〈
[Cm(X + R) −Cm(X)]2

〉
= S C(R) −

(
v20 + σ

2
v + σ

2
th

)
S I(R), (75)

where S C and S I are the structure functions of the non-
normalized velocity centroid and of the intensity, respectively.
Given the relationship between the structure and autocorrela-
tion functions, we can write the autocorrelation function ACm

of the modified velocity centroids as

ACm (R) = AC(R) −
(
v20 + σ

2
v + σ

2
th

)
AI(R) + E, (76)

E being a constant involving the values of AC and AI at zero
lag. Now, since AI contains no first-order term, it appears that
modified and non-normalized velocity centroids have the same
first order contribution in their autocorrelation functions. As
noted earlier, however, it is not yet clear whether this contri-
bution is actually more important than the first order term in
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the autocorrelation function of normalized centroids. If it is, it
would tend to prove that normalization may be a better way of
retrieving velocity statistics in weakly compressible flows. To
make the comparison of correction schemes clearer, one can
show a relationship between the autocorrelation functions of I,
C and C0 as written in Eqs. (24), (43) and (56),

(αDρ0)2AC0 (R) = (αDρ0v0)2 + AC(R) − v20AI(R)

−2(αD)2ρ0M(s)
v,v,ρ(R, R) +G(R), (77)

where G(R) stands for the terms of order at least two in den-
sity fluctuations. Deriving the relationship between the struc-
ture functions of I, C and C0, the latter being noted S C0 , we
have

(αDρ0)2S C0 (R) = S C(R) − v20S I(R) − 4(αD)2ρ0

[
M(s)
v,v,ρ(0, 0)

−M(s)
v,v,ρ(R, R)

]
+ 2 [G(0) −G(R)] . (78)

Comparing this with Eq. (75), it is clear that modified veloc-
ity centroids subtract more of the intensity structure, thus re-
moving second order terms, while normalization performs a
more complex correction, involving all orders in density fluc-
tuations. Actual comparison of the merits of normalized and
modified velocity centroids requires numerical tests, which
have only been performed by Lazarian & Esquivel (2003) on
highly compressible MHD turbulence. That particular case is
actually not within the scope of our study, firstly because den-
sity fluctuations are large and the condition for the expansion
in the normalized velocity centroid’s case may not be met,
and secondly because the presence of a magnetic field implies
anisotropy. Both limitations render the comparison with the
work of Lazarian & Esquivel (2003) a bit uncertain, although it
is likely that terms of higher order in density fluctuations may
become dominant. Thus, the effectiveness of modified velocity
centroids, as compared to normalized centroids, in their simula-
tions may be related to the second order correction through S I ,
which is more important in modified velocity centroids. In any
case, further analytical and numerical work is warranted in or-
der to establish these conclusions more firmly, especially in the
weakly compressible flow regime.

7. Conclusions

An analytical study of a simple slightly compressible turbu-
lent cloud model was presented, assuming homogeneity and
isotropy of the turbulent flow. From the expressions of the an-
tenna temperature for an optically thin spectral line and of its
successive moments with respect to the line of sight velocity
component, we computed the autocorrelation functions of the
intensity and of both normalized and non-normalized velocity
centroids, which involve averages, along the line of sight, of
correlation functions of the three-dimensional density and ve-
locity fields.

To the lowest order, the autocorrelation functions of the
velocity centroids behave, with respect to the velocity field,
as the autocorrelation function of the intensity with respect
to the density field. This sheds light on the numerical result

of Miville-Deschênes et al. (2003a), who found that, for frac-
tional Brownian motion density and velocity fields, the spec-
tral index of the normalized centroid is equal to that of the
velocity field. We derived this result analytically, for separa-
tions across the sky much smaller than the cloud’s depth, and
in real space, while previous studies such as that of Goldman
(2000) were performed in Fourier space. However, the result of
Miville-Deschênes et al. (2003a) holds for fields outside of the
validity domain for our calculation.

Comparison of the expansions of the autocorrelation func-
tions of both types of velocity centroids shows that normal-
ization performs a correction of the first order in density fluc-
tuations, although its magnitude remains to be assessed, a
task for which numerical simulations are probably necessary.
Numerical tests should also provide us with a robust compar-
ison between normalized velocity centroids and the modified
velocity centroids of Lazarian & Esquivel (2003), which imply
corrections of order two in density fluctuations. At present, this
comparison has been performed only on simulations of highly
compressible and magnetized turbulence, a case beyond the
scope of our analytical study, and has shown that, in this partic-
ular case, modified velocity centroids provide a more reliable
tool than normalized centroids.

In a forthcoming paper, we shall therefore present numeri-
cal simulations aimed at assessing the validity domain of our
calculations and, beyond normalized and modified velocity
centroids, pursuing the search for a better correction scheme
able to retrieve the underlying velocity statistics from observa-
tional data.

Acknowledgements. I wish to acknowledge fruitful discussions with
Alex Lazarian during his stay at the École normale supérieure. His
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Appendix A: The Chandrasekhar-Münch scheme

For a function f (r) depending on the three-dimensional separation r, double integrals of the form

I =
∫∫

I2
D

f (R + (z2 − z1)ez)dz1dz2 (A.1)

can be transformed, taking into account the fact that the integrand only depends on the difference ∆z = z2− z1, because R is fixed,
as shown in Chandrasekhar & Münch (1952). Making the variable change ∆z = z2 − z1 and z = z1,

I =
∫
ID

dz
∫
IDz

d∆z f (R + ∆zez). (A.2)

where the notation IDz stands for the segment ID shifted by −z, IDz = [−D/2 − z,D/2 − z], which we can separate in two, with a
negative part, I−Dz

= [−D/2 − z, 0], and a positive part I+Dz
= [0,D/2 − z].

I =
∫
ID

dz
∫
I−Dz

d∆z f (R + ∆zez) +
∫
ID

dz
∫
I−Dz

d∆z f (R + ∆zez). (A.3)

Exchanging the order of integrations in each of these two terms, and expliciting the integral over z, we have

I =
∫ 0

−D
f (R + ∆zez)(D + ∆z)d∆z +

∫ D

0
f (R + ∆zez)(D − ∆z)d∆z, (A.4)

which can be finally written as

I =
∫
I2D

(D − |∆z|) f (R + ∆zez)d∆z. (A.5)

The factor (D − |∆z|) expresses the fact that for a finite slab, two given separations ∆z and ∆z′ are not represented by the same
number of pairs of points.

Appendix B: Autocorrelation functions of the velocity centroid maps in the case v0 = 0

When the mean velocity v0 is null, the method used in the main body of the paper cannot be applied without some modification.
Little needs to be done, however, as velocity fluctuations can be measured with respect to the sound speed cs, which we assume
to be uniform within the turbulent slab. We may then write the velocity centroid C as

C(X) = α
∫
ID

(ρ0 + δρ(X, z)) δv(X, z)dz = αρ0csD

 1
D

∫
ID

δv(X, z)
cs

dz +
1
D

∫
ID

δρ(X, z)
ρ0

δv(X, z)
cs

dz

 , (B.1)

which can be written in the shorthand form C(X) = αρ0csD
[
yvX + yρvX

]
. The normalized velocity centroid then reads

C0(X) =
C(X)
I(X)

= cs

[
yvX + yρvX

] [
1 + yρX

]−1
. (B.2)

The calculation therefore proceeds in the same way, with cs taking the place of v0 and the ai of Eq. (26) being replaced by new
coefficients a′i given by

a′0 = yvXyvX+R ,
a′1 = yρvXyvX+R + yρvX+RyvX ,
a′2 = yρvXyρvX+R .

It follows that the autocorrelation function of the non-normalized centroid is, in this case,

AC(R) = (αD)2
[
ρ2

0 Mv,v(R) + 2ρ0Mρv,v(R) + Mρv,ρv(R)
]
, (B.3)

which is precisely what is found form the general case when setting v0 = 0. Similarly, for the normalized centroid,

AC0 (R) = Mv,v(R) +
2
ρ0

[
Mρv,v(R) − M(s)

v,v,ρ(R, R)
]
. (B.4)
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Appendix C: Expansion of the averaged autocorrelation function of an fBm field

We wish to compute the following expression as a function of the lag R = |R|, in the limit R � D,

M(R) =
1

D2

∫
I2D

−Λ
(
R2 + z2

)H

D2H
+ σ2

 (D − |z|)dz, (C.1)

where Λ is a positive constant and H ∈ [0, 1] is the Hurst exponent. M(R) can be expressed as an integral over [0,D],

M(R) =
2

D2

∫ D

0

−Λ
(
R2 + z2

)H

D2H
+ σ2

 (D − z)dz =
2

D2

−Λ
∫ D

0

(
R2 + z2

)H

D2H
(D − z)dz + σ2

∫ D

0
(D − z)dz

 .
The last integral is easily shown to be equal to D2/2, and so

M(R) = − 2Λ
D2H+1

∫ D

0

(
R2 + z2

)H
dz +

2Λ
D2H+2

∫ D

0

(
R2 + z2

)H
zdz + σ2. (C.2)

The second of the remaining integrals can be explicited by setting R2 + z2 = r2, since zdz = rdr for R fixed,∫ D

0

(
R2 + z2

)H
zdz =

∫ √
R2+D2

R
r2H+1dr =

1
2H + 2

[(
R2 + D2

)H+1 −
(
R2

)H+1
]
, (C.3)

since 2H + 1 � −1 for 0 � H � 1. We therefore have

M(R) = − 2Λ
D2H+1

∫ D

0

(
R2 + z2

)H
dz +

Λ

H + 1


(
1 +

R2

D2

)H+1

−
(

R2

D2

)H+1 + σ2. (C.4)

For a zero separation in the plane of the sky, this expression is, explicitly,

M(0) = − 2Λ
D2H+1

∫ D

0
z2Hdz +

Λ

H + 1
+ σ2 = − Λ

(2H + 1)(H + 1)
+ σ2. (C.5)

When R � 0, the first integral in Eq. (C.4) generally cannot be written in closed form (Gradshteyn & Ryzhik 1980). Notable
exceptions are for H = 0 and H = 1, when, respectively,

M(R) = −Λ + σ2 and M(R) = −Λ
( R

D

)2

− Λ
6
+ σ2. (C.6)

To simplify the notations, we introduce the function K = K′ − K′′, defined by M(R) = −ΛK(R,H) + σ2, with

K′(R,H) =
2

D2H+1

∫ D

0

(
R2 + z2

)H
dz and K′′(R,H) =

1
H + 1


(
1 +

R2

D2

)H+1

−
(

R2

D2

)H+1 · (C.7)

It is now interesting to consider the case of separations R � D, which corresponds to studying the small scale structure of
centroid maps. This allows to develop K(R,H) in powers of R/D. Expansion of K′′ is straightforward,

K′′(R,H) =
1

H + 1

∑
n�0

γn(H + 1)
n!

( R
D

)2n

for 0 < H � 1 and K′′(R, 0) = 1, (C.8)

where we introduced γn(x) = x(x − 1) . . . (x − n + 1). As for K′, since we consider D 
 R > 0 we can write it as

K′(R,H) = 2
∫ D/R

0

(
1 + y2

)H
dy

( R
D

)2H+1

= 2
( R

D

)2H+1 [∫ 1

0

(
1 + y2

)H
dy +

∫ D/R

1

(
1 + y2

)H
dy

]
. (C.9)

The first integral, between 0 and 1, which we dub K0(H), cannot be explicited, but since it does not depend on R, it is unimportant
with respect to the structure of the moment maps. The second integral can be transformed in order to develop the integrand
through 1 + y2 = y2(1 + y−2),

K′(R,H) = 2
( R

D

)2H+1
K0(H) +

∑
k�0

γk(H)
k!

∫ D/R

1
y2H−2kdy

 . (C.10)

Computing the integrals in the equation above for 0 < H < 1 and H � 0.5, we have

K′(R,H) = 2
( R

D

)2H+1
K0(H) +

∑
k�0

γk(H)
k!

1
2H − 2k + 1

[(D
R

)2H−2k+1

− 1

] , (C.11)
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which, after rearranging the terms, leads to the following expression for K′,

K′(R,H) = 2

K0(H) −
∑
k�0

γk(H)
(2H − 2k + 1)k!


( R

D

)2H+1

+
∑
k�0

2γk(H)
(2H − 2k + 1)k!

( R
D

)2k

· (C.12)

If 0 < H < 0.5, then 1 < 2H + 1 < 2 and the leading order expansion is therefore

K′(R,H) � 2
2H + 1

+ 2

K0(H) −
∑
k�0

γk(H)
2H − 2k + 1


( R

D

)2H+1

, (C.13)

while if 0.5 < H < 1, then 2 < 2H + 1 < 3 and the k = 1 term of the last sum is dominant,

K′(R,H) � 2
2H + 1

+
2H

2H − 1

( R
D

)2

· (C.14)

This last expression is also valid for H = 1, while obviously K′(R, 0) = 2. For H = 0.5, the k = 1 integral is

∫ D/R

1
y−1dy = − ln

( R
D

)
, (C.15)

and for k � 1 the integrals are unchanged. It follows that

K′(R, 0.5) = 2
( R

D

)2
K0(0.5) − 1

2
ln

( R
D

)
+

∑
k�1

γk(0.5)
2 − 2k

[(D
R

)2−2k

− 1

] , (C.16)

which gives, after rearranging the terms,

K′(R, 0.5) = 1 −
( R

D

)2

ln
( R

D

)
+

2K0(0.5) −
∑
k�1

γk(0.5)
1 − k

 R2

D2
+

∑
k�2

γk(0.5)
1 − k

( R
D

)2k

· (C.17)

Finally, the leading order expansion of K(R,H) for small separations R � D is

K(R,H) � 1
(2H + 1)(H + 1)

+ 2

K0(H) −
∑
k�0

γk(H)
2H − 2k + 1


( R

D

)2H+1

for 0 � H < 0.5, (C.18)

K(R,H) � 1
(2H + 1)(H + 1)

+
1

2H − 1

( R
D

)2

for 0.5 < H � 1, (C.19)

K(R, 0.5) � 1
3
−

( R
D

)2

ln
( R

D

)
· (C.20)

Consequently, the expansion of M(R) = −ΛK(R,H) + σ2 reads

M(R) � σ2 − Λ

(2H + 1)(H + 1)
− 2Λ

K0(H) −
∑
k�0

γk(H)
2H − 2k + 1


( R

D

)2H+1

for 0 � H < 0.5, (C.21)

M(R) � σ2 − Λ

(2H + 1)(H + 1)
− Λ

2H − 1

( R
D

)2

for 0.5 < H � 1, (C.22)

M(R) � σ2 − Λ
3
+ Λ

( R
D

)2

ln
( R

D

)
for H = 0.5. (C.23)

The consequences on the statistical measures performed on the moment maps are straightforward to derive. They are given and
analyzed in the main body of the paper.
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Appendix D: The uniformity of fBm fields with H > 1

We consider the mean squared increment of an fBm field F of Hurst exponent H > 1 between positions x and x + r. The
separation vector r is then separated in p equal parts, so that

[F (x + r) − F (x)]2 =


p−1∑
k=0

[
F

(
x +

k + 1
p

r
)
− F

(
x +

k
p

r
)]

2

=


p−1∑
k=0

∆Fk


2

, (D.1)

where ∆Fk is the increment of F between the kth and (k + 1)th positions. Expansion of the expression above yields

[F (x + r) − F (x)]2 =

p−1∑
k=0

∆F 2
k + 2

∑
i< j

∆Fi∆F j. (D.2)

Now, ∆Fi∆F j can be written as an autocorrelation product of the function Gr,p = F (x + r/p) − F (x),

∆Fi∆F j =

[
Gr,p

(
x +

i
p

r
)] [
Gr,p

(
x +

j
p

r
)]
. (D.3)

Since autocorrelation functions are decreasing from their zero spacing value, we have

∆Fi∆F j �
[
Gr,p (x)

]2
, (D.4)

which allows us to give an upper limit for the mean squared increment of F ,

[F (x + r) − F (x)]2 �
2Λ

p2H−1
r2H + p(p − 1)

2Λ
p2H

r2H = 2Λp2(1−H)r2H . (D.5)

This result being valid for any value of p, which characterizes a subdivision of the separation vector r, we see that since H > 1,

the limit p→ ∞ implies [F (x + r) − F (x)]2 = 0 and therefore F is a uniform field.


