SPICA: the concept pre-2013

The vision of unique new science!

What again is unique about SPICA? ...why is it so worthwhile??

- The COLD, big mirror:
 - Unique wavelength domain
 - → ~20 to ~350 µm *inaccessible for any observatory*
 - Filling the void between JWST and ALMA @ R~ few 1000
 - R>10000 would be unique over full 10 350 μm domain
 - > 2 orders of magnitude more sensitive than e.g. Herschel
 → background limited Far-IR observations

Note – *very much* in line with US workshop on future IR missions; **either** *big and cold* **or** *high spatial resolution*

SPICA from 1.0 to 2.0...

Fundamental boundary condition:

agencies have limited resources available for SPICA

many 'iterations' to assess how those can be used best

- Until 2013 JAXA/L mission + ESA/\mission of opportunity'
- Summer/Fall 2013 JAXA/L + ESA/M4 → replan for SPICA 2.0
 - December 2013 May 2014 SPICA core science definition
 - January 2014 ISAS/SRON/SAFARI discussions on M4 context
 - Strong ISAS-SRON commitment for SPICA!
- May 2014: significant worry at agency level (ESA and JAXA) about feasibility of SPICA within joint resource limits
 - Note in Europe M4 scale was being reduced at that time
- ESA proposed CDF to see what kind of cold IR mission could be doable within ESA/M + JAXA/M context

And onwards to SPICA-X?...

- Summer 2014 M4 likely not viable → SPICA to consider M5
 - September 2014 SAFARI consortium
 - Note attended/supported by both ESA and JAXA
 - → consortium unanimously *positive* about *considering M5*
- Fall 2014 CDF study NG-CryoIRTel
- January-March interactions between JAXA, ESA and SAFARI
 - What does the CDF outcome imply for SPICA (...open for different interpretations...)
 - Revisit science requirements → revisit instrument concepts

Andnow; here we are... Go/NoGo for an M5 proposal?

- Which concept has the best chance in the M5 competition
- Different concepts with pros and cons, science cases, telescope parameters, instrument complement, instrument consortia

If Go ... → prepare to start writing process

The NG-CryoIRTel study

Main changes with respect tor SPICA 2.0

- PLANCK configuration → well understood at ESA
- Passive cooling to ~ 40K i.s.o. 20K
- ESA-led, bias to ESA technology/processes

2 mtr on-axis

~2.8 mtr off-axis

Mid-infrared instrument: from MCS to SMI

SMI: SPICA Mid-infrared Instrument, refined for new SPICA.

MCS	
Cam / Low-R Spec	5 – 37 μm FoV: 5'x5' R = 5 & 50
Mid-R Spec	12 – 37 μm FoV: 12" x 8" R = 1000–3000
High-R Spec	12 – 18 μm Slit size: 6"x1" R = 20000

Previous SAFARI reference design

- Scanning Fourier Transform Spectrometer with 2'x2' FoV
- Simultaneously observing in 3 bands → 34-210µm
- TES detectors/SQUID read out at 50 mK
- Frequency Domain Multiplexing

SRON

OPD (mm)

The new SAFARI concept

- Grating based spectrometer
 - Basic R \sim 300 mode \rightarrow 1hr/5 $\sigma \sim$ 4-6 \times 10⁻²⁰ W/m² (6m²)
 - FP enhanced R~3000 mode
 - 3 bands covering 35-210 micron, operated sequentially
 - 4 pixels simultaneous on-sky
- Some of the questions and conceivable options
 - Is R ~300/3000 OK?
 - Is sequential operation OK?
 - A fourth band → LLW?
 - An imaging channel → what wavelength?
 ...much ongoing development and refinement
 - ...Science... what is your priority??

Defining the SPICA core science

- Over the last year high priority joint European-Japanese activity
 - December 2013 April 2014; core science team meetings
 - April 2014 draft white papers
 - May 2014 Leiden open SPICA science workshop
 - December 16/17 2014 workshop in Bologna
 - January 12/13 workshop in Osaka

Now – quite clear **joint** view on major SPICA themes:

- Deep extragalactic mid-to-far IR spectroscopic surveys
 combined with spectral imaging of nearby/local group galaxies
- Spectroscopy of protostars and planet-forming discs

Concluding; points to keep in mind

The mission – **SPICA-X**? – is now in a decisive Go/NoGo phase

- The one (and only?) IR mission in the (any?) mid term
 - Science case is now well understood/defined
 - Big telescope required by European and US astronomers
 - Medium size telescope acceptable to Japanese astronomers
- Significant (strong?) desire on side of agencies to cooperate
 - Both ESA and JAXA strongly support proposal preparatory activities
 - Need to fully unify European and Japanese views
- Mission and instrument re-configuration shows great promise
 - Telescope size, on or off-axis, thermal configuration, JAXA-ESA split
 - System trades; e.g. telescope size vs. instrument capabilities
 - FTS → grating, far-IR camera, SMI → ?, SPEcHO, BLISS?

So shall we go on?

....yes? ...then there is work to do!

- Near-ish term milestones
 - Summer; Mission Definition Review in Japan
 - ~fall/winter; M5 call
- → both need clear science goals and instrument/mission concepts
- Parallel tasks with (lots) of cross-fertilization
 - Science team → revisit science goals in 'new' R~300/3000 configuration, revisit requirements (high R?)
 - SAFARI/instrument → further detail grating option(s?), grating detector system study
 - SMI/instrument → further detailing (e.g. FTS)
 - SAFARI project → revisit consortium task distribution

The first order timeline

What	When	Who
CDF report	~February (?)	
Science evaluation	January – February	SPICA science team
Consortium meeting → M5 Y/N?	Now	(SPICA) consortium
Refine mission/instrument definition	Spring/summer 2015	SPICA + SAFARI + M5 team
SPICA reviews in Japan	Summer 2015	
M5 call	late 2015 /early 2016?	ESA
Write M5 proposal	Spring 2016	M5 team +consortium
M5 candidate selection	Q2/Q3 2016	SPC
,		
M5 mission selection	2018/2019	SPC
Launch	2028	

VERY tentative, not consolidated with SPICA, ESA...

SPICA/SAFARI Fact Sheet

SAFARI Overview

- Three band *grating spectrometer*
- Continuous spectroscopic capability from 34-210 μm

Parameter		Waveband					
		SW	MW	LW			
Band centre / µm		47	85	160			
Wavelength range / μm		34-60	60-110	110-210			
Band centre beam FWHM		4.7"	8.6"	16″			
Point source spectroscopy (5σ-1hr)							
R~300*	Limiting flux / x10 ⁻²⁰ Wm ⁻²	5.3	4.5	6.5			
	Limiting flux density / mJy	0.25	0.36	0.92			
R~3000*	Limiting flux / x10 ⁻²⁰ Wm ⁻²	25	24	29			
	Limiting flux density / mJy	1.2	2.0	4.1			
Mapping spectroscopy** (5σ-1hr)							
R~300*	Limiting flux / x10 ⁻²⁰ Wm ⁻²	59	28	22			
	Limiting flux density / mJy	2.8	2.3	3.0			
R~3000*	Limiting flux / x10 ⁻²⁰ Wm ⁻²	340	190	120			
	Limiting flux density / mJy	17	15	17			
Photometric mapping** (5σ-1hr)							
Lin	niting flux density / mJy	0.3	0.2	0.3			

SPICA Mission

- ESA/JAXA collaboration
- Telescope effective area 5 m²
- Primary mirror temperature 8K
- Goal mission lifetime 5 years

- Change in system performance, as a function of target flux density, relative to the background limited case.
- The decrease in sensitivity is a result of the increased photon noise from the target source
- Data given up to the instrument saturation limits for each band (22, 37 and 73 Jy for the SW, MW and LW bands respectively.
- * Resolving powers are all calculated at band centre
- ** Mapping performance is for a reference area of 1 arcmin²

SPICA / SMI Fact Sheet

<u>SPICA Mid-infrared Instrument (SMI)</u> covers the wavelength range of 17–37 μm with one imaging channel and two spectroscopic channels.

Parameter		Function			
		Cam (multi-slit low-R Spec)	Spec-S	Spec-L	
Wavelength range		17-37 μm	17-27 μm	27-37 μm	
Spectral resolution		50	1000-2000 ^a (point source), 1000 ^b (diffuse)		
Field of View		360" x 3."7 x 4 slits	150" x 3."7 (slit)		
FWHM		1."7 (17 μm) - 3."7 (37 μm)			
Pixel scale		0."6x 0."6	0."6		
Detector		Si:Sb 1K x 1K	Si:As 1K x 1K	Si:Sb 1K x 1K	
Point source	Cont. sensitivity (1 hr, 5 sigma)	20 – 110 μJy	200 – 700 μJy	300 – 4000 μJy	
	Line sensitivity (1 hr, 5 sigma)	(6 – 18) x 10 ⁻²⁰ W/m ²	(3 – 10) x 10 ⁻²⁰ W/m ²	(5 – 40) x 10 ⁻²⁰ W/m ²	
	Survey speed ^c	~ 18 arcmin ² /hr	~ 4 arcmin²/hr	~ 2 arcmin²/hr	
Diffuse	Sensitivity ^d (1 hr, 5 sigma)	Continuum	Line		
		0.1 – 0.5 MJy/sr	(0.5 – 2) x 10 ⁻⁹ W/m ² /sr	(0.7 – 2) x 10 ⁻⁹ W/m ² /sr	
Saturation limit		~ 2 Jy	~ 140 Jy	~ 600 Jy	

SMI Factsheet v2 – 10 March 2015

a: $\lambda/\delta\lambda$ =2000 at λ =22 μm, $\lambda/\delta\lambda$ =1000 at λ =35 μm b: for 17 – 37μm

c: survey speed for the 5 sigma detection of a point source with the continuum flux of 100 μ Jy and the line flux of $3x10^{-19}$ W/m² for Cam and Spec, respectively

d: sensitivity for a diffuse source in a 4" x 4" area

e: Background levels are assumed to be 80 MJy/sr (High) and 15 MJy/sr (Low) at 25 μm.

A possible change of the SMI configuration

Current configuration

SMI-Cam

R=50 (multi-slit prism)

Slit length: 6'

FoV: 6' x 10' (w/ spatial scan)

Detector: Si:Sb 1K x 1K

Wavelength: $17 - 37 \mu m$

+ Slit viewer: 33 μ m, R=5 (TBD)

SMI-Spec

R=1000 (long-slit grating)

Slit length: 2.5'

Si:Sb 1K x 1K + Si:As 1K x 1K

 $17 - 37 \mu m$

New configuration if we add HRS.

SMI-LRS

Same as the current SMI-Cam

SMI-MRS

R=1000

Smaller FoV + beam steering mirror

(provided by SAFARI)

Si:Sb 1K x 1K

 $18 - 36 \mu m$

SMI-HRS

R=20000 (TBD)

Slit length: 6" (TBD)

Si:As 1K x 1K (procured by SPeChO?)

 $12 - 18 \mu m (TBD)$