Post-processing of MHD simulations with the Meudon PDR code

F. Levrier P. Hennebelle P. Lesaffre M. Gerin E. Falgarone (LERMA - ENS)

F. Le Petit (LUTH - Observatoire de Paris)

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Laboratoire de l'Univers et de ses Théories

SCHISM meeting, Meudon, 11.12.2013

Talk overview

- PDR code on MHD simulations
- CO-Dark neutral gas
- H_3^+ chemistry and cosmic ray ionization rate
- Perspectives

UV-driven chemistry of a simulated ISM

The Meudon PDR code

Stationary ID model, including :

Outputs:

UV radiative transfer:

Absorption in molecular lines Absorption in the continuum (dust) 10000's of lines

Chemistry :

Several hundred chemical species Network of sevral thousand chemical reactions Photoionization

Cosmic ray ionization

Photoelectric effect

Statistical equilibrium of level populations

Radiative and collisional excitations and de-excitations Photodissociation

Thermal balance:

Chemistry

$$\zeta_0 = 5 \ 10^{-17} \ \mathrm{s}^{-17}$$

Local quantities :

Abundance and excitation of species Temperature of gas and duts Detailed heating and cooling rates Energy density Gas and grain temperatures Chemical reaction rates

Integrated quantities on the line of sight :

Species column densities Line intensities Absorption of the radiation field Spectra

Le Bourlot et al. 1999

Le Petit et al. 2006 Goicoechea & Le Bourlot 2007 Gonzalez-Garcia et al. 2008

http://pdr.obspm.fr/

Compressible MHD turbulence simulation

Hennebelle et al. 2008

Structures along the lines of sight

Temperature comparison

Ratio of the temperature computed by the PDR code and the temperature from the MHD simulation

Main H and C bearers in the PDR/MHD simulation

- C⁺ closely follows the total gas density, except in the densest regions.
- CO only in the densest regions

Density fluctuations vs. uniform density : CO

Density fluctuations vs. uniform density : CH

Simulated observations in CO and C⁺

Levrier et al. 2012

Velusamy et al. 2010

"Dark neutral gas" fraction through the cloudlet

H₃⁺ chemistry

Indriolo & McCall 2012

FORMATION

$$\begin{split} \mathrm{H}_2 + \mathrm{CR} &\to \mathrm{H}_2^+ + e^- + \mathrm{CR'} \\ & \\ \mathbf{then} \\ \mathrm{H}_2 + \mathrm{H}_2^+ &\to \mathrm{H}_3^+ + \mathrm{H} \end{split}$$

$$H_2^+ + e^- \rightarrow H + H$$
$$H_2^+ + H \rightarrow H_2 + H^+$$

CR ionization of molecular hydrogen dominates over photoionization (E>15.4 eV) DESTRUCTION

In diffuse clouds :

$$k_e \begin{cases} \mathrm{H}_3^+ + e^- \to \mathrm{H}_2 + \mathrm{H} \\ \mathrm{H}_3^+ + e^- \to \mathrm{H} + \mathrm{H} + \mathrm{H} \end{cases}$$

In dense clouds :

 $H_3^+ + CO \rightarrow HCO^+ + H_2$ $H_3^+ + CO \rightarrow HOC^+ + H_2$ $H_3^+ + O \rightarrow OH^+ + H_2$ $H_3^+ + N_2 \rightarrow HN_2^+ + H_2$

Formation of molecular ions essential to drive more complex chemistry

CR ionization rate from H₃+ data

Equilibrium in diffuse clouds

$$\zeta_{\text{local}} = k_e n(e) \frac{n(\mathrm{H}_3^+)}{n(\mathrm{H}_2)}$$

But data comes integrated on the line of sight...

Local CR ionization rate

Dissociative recombination speed constant

$$k_e = -1.3 \ 10^{-8} + 1.27 \ 10^{-6} T_e^{-0.48} \ \mathrm{cm}^3 \mathrm{.s}^{-1}$$

(Indriolo & McCall 2012)

$$k_e = 6.8 \ 10^{-8} \left(\frac{T_e}{300}\right)^{-0.5} {\rm cm}^3 {\rm .s}^{-1}$$
 (PDR code)

Dense : $\zeta_{\text{local}}/\zeta_0 \simeq 0.8 - 1$ **Diffuse :** $\zeta_{\text{local}}/\zeta_0 \simeq 0.2 - 0.5$

 $\zeta_{\rm LOS} = \langle k_e \rangle \langle n(e) \rangle \frac{N({\rm H}_3^+)}{N({\rm H}_2)}$

 $(T_e = T)$

Local vs. line-of-sight CR ionization rate

On each LOS, compute mean and standard deviation of the local CR ionization rate

- Average local values follow the LOS integrated estimates
- Large scatter around the mean
- Systematic underestimation with respect to input CR ionization rate

Changing the input CR ionization rate

Changing the input CR ionization rate

- \bullet $\mathrm{H}_{3}{}^{\scriptscriptstyle +}$ abundances globally enhanced by CR ionization rate enhancement
- Local vs. line-of-sight averaged CR ionization rate correlation remains unchanged

Taking into account realistic illuminations

B. Ladjelate : M2 internship 2013

- Decomposition of structures
- Realistic dust extinction
- Library of Gaussian clump PDR models
- Height / Width / Illuminations

$$\chi = \left\langle e^{-\tau} \right\rangle = \frac{1}{n_{\rm d}} \sum_{i=1}^{n_{\rm d}} e^{-\sigma N_H^{(i)}}$$

Conclusions

- Observational column density scalings better reproduced when including density fluctuations
- "Dark neutral gas" fraction agrees with Herschel observations and independent PDR models
- LOS-integrated CR ionization rate agrees with local estimates
- But large scatter from different physical conditions : large sample required
- CR ionization rate systematically underestimated if derived only from H_3^+ , especially at low densities
- Gaussian cloud grid of models for pseudo-3D on the whole MHD cube (work in progress)