Polarized thermal emission from Galactic dust, as seen by Planck

F. Levrier (LERMA / ENS Paris et Observatoire de Paris) on behalf of the *Planck* collaboration

planck

Deutsches Zentrum

DLR für Luft- und Raumfahrt e.V.

National Research Council of Italy

di Milano

The first Planck papers in polarization

Planck intermediate results. XIX.

An overview of the polarized thermal emission from Galactic dust

Planck Collaboration

arXiv:astro-ph 1405.0871

Planck intermediate results. XX.

Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence Planck Collaboration

arXiv:astro-ph 1405.0872

Planck intermediate results. XXI.

Comparison of polarized thermal emission from Galactic dust at 353 GHz with optical interstellar polarization Planck Collaboration

arXiv:astro-ph 1405.0873

Planck intermediate results. XXII.

Frequency dependence of thermal emission from Galactic dust in intensity and polarization Planck Collaboration

arXiv:astro-ph 1405.0874

Submitted to A&A April 28 Published on arXiv May 5

Data to be released in the fall

Talk outline

- Polarized submillimetre dust emission
- The Planck mission
- The large-scale view of polarized dust emission
- Statistical comparison with MHD simulations
- Comparison with optical polarization in extinction
- Frequency dependence of polarized dust emission

Polarized thermal emission from dust

Aspherical dust grains:

Emissivities larger along long axis

Rotating dust grains:

Angular momentum L aligns with B

Polarized thermal dust emission gives information on:

- Dust optical properties and composition
- Magnetic field topology

The Planck mission

- 2009-2012 space mission
- Measurement of CMB anisotropies
- Mapping of the cold, dusty Milky Way
- Polarization : Galactic dust, primordial gravitational waves

Planck 2013 results : Cosmology

Planck 2013 results: Galactic dust emission

Modified Black-body fit

$$I_{\nu} = \tau_{\nu_0} B_{\nu}(T_{\rm obs}) \left(\frac{\nu}{\nu_0}\right)^{\beta_{\rm obs}}$$

Stokes Q and U

Polarized intensity and polarization fraction

- Low polarization fractions in the Galactic Plane
- Some highly polarized regions (Fan/Auriga, Aquila Rift,...)
- Thin filamentary regions of low polarization

Polarization fraction and polarization angle

Maximum polarization fraction

Intrinsic polarization fraction of dust at least 20%

Two to three regimes of p decrease with N_H

Polarization angle dispersion function

1.8 $\log_{10}(\Delta \psi/\deg)$

Whole masked sky

$$p > 5\%$$

$$5\% > p > 1\%$$
 $p < 1\%$

1° resolution 30' lag

Planck intermediate results. XIX.

Anticorrelation with polarization fraction

- Strong anti-correlation between p and $\Delta\psi$
- Low p where the polarization angle changes abruptly
- Increased lag flattens the anti-correlation

Anticorrelation with polarization fraction

- Strong anti-correlation between p and $\Delta\psi$
- Low p where the polarization angle changes abruptly
- Increased lag flattens the anti-correlation

Polarized dust emission in nearby clouds

Planck intermediate results. XX.

Segments : mean orientation of *B* in the plane of the sky

Contours : column density (units of 10²¹ cm⁻²)

Segments: mean orientation of B in the plane of the sky

Anti-correlation robust with respect to polarization S/N

Anti-correlation robust with respect to polarization S/N

Simulating polarized thermal dust emission

- 18 pc subset of a 50 pc cube
- Converging flows of magnetized warm gas
- Mean magnetic field along the flows
- Rotation of the cube, placed at 200 pc
- Simulated Stokes maps smoothed at 5'

$$I = \int S_{\nu} e^{-\tau_{\nu}} \left[1 - p_0 \left(\cos^2 \gamma - \frac{2}{3} \right) \right] d\tau_{\nu}$$

$$Q = \int p_0 S_{\nu} e^{-\tau_{\nu}} \cos(2\phi) \cos^2 \gamma d\tau_{\nu}$$

$$U = \int p_0 S_{\nu} e^{-\tau_{\nu}} \sin(2\phi) \cos^2 \gamma d\tau_{\nu}$$

« Intrinsic dust polarization parameter »

$$p_0 = 0.2$$

Opacity at 353 GHz (Planck Collaboration XXXI, 2014)

$$\tau_{353}/N_{\rm H} = 1.2 \times 10^{-26} \, {\rm cm}^{-2}$$

Dust temperature

$$T_d = 18 \,\mathrm{K}$$

Rotating the anisotropic input cubes

Simulated polarization maps

Simulated polarization maps

Simulations reproduce very well the decrease of p_{max} with N_{H} in the range 10^{21} to 2×10^{22} cm⁻²

Global trend is reproduced, but simulations tend to have too high an angular dispersion

Comparison with polarization in extinction

Selection of 215 stars with optical polarization measurements with consistent polarization angles and column densities

Selection on reddening ratio

90

 ψ_{V} (V band) [degree]

120

150

180

-30

Planck intermediate results. XXI.

Comparison with polarization in extinction

$$R_{
m S/V}=rac{P_{
m S}/I_{
m S}}{p_{
m V}/ au_{
m V}}=4.3\pm0.2\pm0.4$$
 . Reasonably compatible with current dust models . Not very discriminating

- · Not very discriminating

$$R_{P/p} = rac{P_{
m S}}{p_{
m V}} = 5.6 \pm 0.2 \pm 0.4 \, {
m MJy \, sr}^{-1}$$
 . Much more discriminating diagnostic

- Current dust models predict a value lower by a factor 2.5

Planck intermediate results. XXI.

Frequency dependence

- 353 GHz maps of Stokes I, Q, U used as dust emission templates
- Cross-correlation with Stokes I, Q, U maps from 23 GHz (WMAP) to 353 GHz at intermediate latitudes
- Determination of 100-353 GHz spectral indices in total intensity and polarization over 10° radius patches

Decrease of polarization fraction by about 30% from 353 GHz to 70 GHz: Constraints on dust models

Planck intermediate results. XXII.

Conclusions

Take home messages

- Intrinsic polarization fraction of dust > 20%
- Decrease of p with N_H well reproduced by simulations
- Anticorrelation between polarization fraction and angle dispersion underlines the role of the magnetic field
- Comparison with polarization in extinction and frequency dependence are constraints for necessary future dust models
- Data to be released in the fall

What remains to be done...

- High latitude diffuse sky, including the BICEP2 field
- High column-density lines of sight (cold cores)