STARFORMAT a platform of numerical simulation results and tools for star formation

François LEVRIER

Ecole Normale Supérieure de Paris

Astrophysics Colloquium University of Oxford 22 February 2011

Overview of the talk

The project

- Scientific context and questions
- Overview of the project
- Structure of the database

An example simulation : converging flows

- Accessing simulation results
- Statistics of "clumps" and comparison with observational data
- On-the-fly clump extraction
- Post-processed radiative transfer with RADMC-3D
- The other simulations in the database

Post-processed chemistry on MHD simulations

- Application of the Meudon PDR code on lines of sight through MHD simulation cubes
- Evidence for "dark" molecular gas, not seen in CO
- Further ideas beyond the ID PDR code

Simulated ALMA observations with GILDAS

- Simulated observations of large-scale MHD flows
- Simulated observations of collapsing cores
- Interpretation of observations

Star formation and the cycle of interstellar matter

The project's goals

Leading scientific questions

- What regulates star formation in galaxies ?
- What determines the stellar initial mass function (IMF) ?
- What governs the structure of molecular clouds ?
- How is energy injected ?
- Are clouds rather supported by the magnetic field or by turbulence ?
- How does gravitational collapse proceed ?

The STARFORMAT projects aims to give clues towards solving these by :

• Putting together many cutting edge numerical simulations of the formation of molecular clouds, prestellar dense cores and circumstellar protoplanetary disks

• Spearheading the VO-Theory group to make these simulations available to the entire astrophysical community, through a web interface

• Thus providing observers a well-documented database of models useful for the preparation and interpretation of future observations (e.g. with ALMA)

The STARFORMAT project

One of 5 projects funded by the European ASTRONET initiative (First joint call for proposals "Common Tools for Future Large submm Facilities" - september 2008)

	French German collaboration involving 4 teams			Financial overview		
Paris Observatory/LERMA-ENS:			2 postdoctoral positions for 2 years			
Pie Pie Ma	trick Hennebelle (French PI) erre Lesaffre, Edith Falgarone, Francois Levrier, arc Joos, Benjamin Ooghe, Jean-Francois Rabass colas Moreau	÷,	 1 Heidelberg : C transfer codes 1 Meudon/LUTH 	oupling between AMR as : Development of 3D PI	nd radiative DR code	
Pa Fra Ur Ra	anck Le Petit, Jacques Le Bourlot, Cecilia Pinto iversity of Heidelberg and MPIA:		2 PhD positions 1 Heidelberg : Po 1 Lerma-ENS : S 1 sofware engine Lerma-ENS / Me	erform large scale MHD Study MHD collapse and eer for 2 years udon: Build the databas	simulations fragmentation	
Rc Pa Be	bi Banerjee, Simon Glover, Cornelis Dullemond, ul Clark, Milica Milosavjevic, Christoph Federrath, noît Commercon					

University of Hamburg:

Peter Hauschildt

Four realms of expertise - Project deliverables

Compressible MHD simulations

Perform large scale MHD and self-gravitating simulations (10⁹ cells) to study molecular cloud and dense core formation Perform a series of smaller simulations extracted from the larger ones to study dense core collapse in great detail

Radiative transfer

Post-process the 3D simulations using simple chemistry and compute continuum and simplified line radiative transfer Compute "on the fly" (i.e. coupled to MHD simulation) simplified radiative transfer and simple chemistry

Detailed chemistry

Extract profiles from the simulations and use 1D PDR code to make predictions on abundances and spectral lines

Develop a 3D PDR code

Database

Build a VO-compatible database of clumps and cores extracted from the simulations including statistics, full clumps details and radiative transfer maps

Link it to the Meudon-PDR code

Expertise and available codes

@ LERMA/ENS

MHD, out of equilibrium chemistry, observations of MC RAMSES

@ LUTH

Detailed equilibrium chemistry, radiative transfer, database work PDR code and database

@ University of Heidelberg / MPIA

MHD, out of equilibrium chemistry, radiative transfer **FLASH, GADGET, RADMC, RADMC-3D**

@ University of Hamburg

Radiative transfer **PHOENIX**

The STARFORMAT web interface

The StarFormat DataBase

The StarFormat database contains results of heavy numerical simulations computed in order to study the problem of star formation, essentially molecular cloud formation, evolution and collapse.

Understanding the dynamical evolution of the interstellar medium (ISM) and its relation to stellar birth is a key challenge in astronomy and astrophysics. The STAR FORMAT project aims at providing observers and theorists studying formation and evolution of molecular clouds, their morphological and kinematical characteristics, and the formation of stars in their interior with a set of theoretical tools and a database of models to aid in the analysis and interpretation of current and future observations.

The goal of this database is to give access to observers, or more generally to any scientist working on a related field, to the results of these numerical simulations, which could be useful to help prepare or analyze observations.

Available projects:

PROJECT	DESCRIPTION				
Colliding flow simulations	This project aims at describing self-consistently the formation of molecular clouds starting from the very diffuse atomic interstellar medium.				
Molecular cloud evolution with decaying turbulence	This project aims at describing the evolution of a turbulent molecular cloud in which the turbulence is decaying.				
Solenoidal vs. Compressive Turbulence Forcing	This project investigates the influence of different forcing (i.e., kinetic energy injection) on turbulent flows in the interstellar medium.				
Chemistry simulations	blablabla				
Dark Energy Universe Virtual Observatory (DEUVO)	This project aims at investigating the imprints of dark energy on cosmic structure formation through very high resolution cosmological simulations				
top of page					

Organisation of the database

PROJECT:

Gather related numerical experiments (Molecular cloud formation, core collapse,...)

PROTOCOL:

A single binary file : One code version, one type of boundary conditions and one type of initial conditions

EXPERIMENT:

One choice of parameter values (boundary and initial conditions...)

SNAPSHOT:

Data for one timestep of the said numerical experiment

SUB-EXPERIMENT:

Calculations performed using the shapshot data :

- Clump extraction
- Line-of-sight extraction
- Post-processing steps (radiative transfer, chemistry, ...)
- ...

Data Model, or "Why we need software engineers"

Overview of the talk

The project

- Scientific context and questions
- Overview of the project
- Structure of the database

An example simulation : converging flows

- Accessing simulation results
- Statistics of "clumps" and comparison with observational data
- On-the-fly clump extraction
- Post-processed radiative transfer with RADMC-3D
- The other simulations in the database

Post-processed chemistry on MHD simulations

- Application of the Meudon PDR code on lines of sight through MHD simulation cubes
- Evidence for "dark" molecular gas, not seen in CO
- Further ideas beyond the ID PDR code

Simulated ALMA observations with GILDAS

- Simulated observations of large-scale MHD flows
- Simulated observations of collapsing cores
- Interpretation of observations

An example simulation from the database

- RAMSES code (Teysier 2002, Fromang et al. 2006)
- Adaptive Mesh Refinement with up to 14 levels
- Periodic boundary conditions
- Includes magnetic field, atomic cooling and gravity
- Covers scales 0.05 pc 50 pc
- ~30,000 CPU hours / 10 to 100 GB data sets

Hennebelle et al. (2008)

What's in a sim ? (I)

PROJECT : Colliding flow simulations

- Scientific case for the simulations : This project aims at describing self-consistently the formation of molecular clouds starting from the very diffuse atomic interstellar medium.
- → **Description of the simulations :** A flow of warm neutral medium is arbitrarily imposed. Under the influence of cooling and ram pressure first, and then also of gravity, the gas undergoes a series of contractions until gravity takes over and triggers the formation of dense cores.
 - → **References** : <u>Hennebelle et al. L43 A&A 486, 2008</u>

What's in a sim ? (II)

PROTOCOL : Converging flows

→ **Contacts :** Patrick Hennebelle, Edouard Audit, VO-Paris Data Centre

→ Code reference and description : <u>RAMSES-MHD code</u> (<u>Teyssier 2002, A&A, 385, 337, Fromang et al. 2006, A&A, 457, 371</u>). This is a mesh refinement code, implying that spatial resolution can be increased locally by adding new cells. It uses the Godunov method and constraint transport method to maintain the divergence of the magnetic field equal to zero.

→ Description of the simulation : Starting the simulation with only static Warm Neutral Medium, a converging flow is imposed from two sides. The converging flows have a velocity equal to a few times the sound speed of ambient WNM. Fluctuations are imposed on top of that mean velocity field. The magnetic field is initially uniform. The simulations includes atomic cooling and gravity. After a few million years, dense cores form and eventually collapse.

Definition of the simulation parameters :

Box size, resolution levels, incoming velocity, fluctuation level, initial magnetic field, initial density, initial temperature

What's in a sim ? (III)

EXPERIMENT : Fiducial run

→ Description of the run :

This run considered as «fiducial» has an effective numerical resolution equal to 1024³ grid cells implying that the size of the smallest cell is about 0.05 pc. The magnetic field in the run and the velocity of the incoming flow are about 5 microGauss initially (but get amplified in the dense regions) and 18 km.s⁻¹ (about twice the sound speed of the warm neutral phase).

→ Applied physics :

Magneto Hydro Dynamics

Magneto-hydrodynamics is treated in this simulation. This implies that the gas is subject to Lorentz forces while the evolution of the magnetic field is dictated by the induction equation.

Gravity

Self-gravity is treated in this simulation. This implies that at each timestep, the Poisson equation is solved to obtain the gravitational potential and the gravitational forces.

Atomic cooling

Atomic cooling is included as described in Wolfire et al. 1995, ApJ, 453, 673 following the implementation described in Audit & Hennebelle, 2005, A&A, 433, 1.

Heating

Photo electric heating on dust grains and PaH is implemented as described in Wolfire et al. 1995, ApJ, 453, 673 following the implementation described in Audit & Hennebelle, 2005, A&A, 433, 1.

\rightarrow Values for the parameters defined in the PROTOCOL :

Box size	50 pc		
Lowest resolution	0.39		
Highest resolution	0.04 1 x5 microGauss		
Magnetic Field - X Boundary			
Incoming flow modulation	1		
Initial density within the box	1 cm ⁻³		
Initial temperature within the box	8000 K		
Incoming flow velocity	17.79 km/s		

What's in a sim ? (IV)

SNAPSHOT : Fiducial run at t=8.55 Myrs

Snapshot properties

Snapshot properties

Also downloadable as ASCII data....

What's in a sim ? (V)

SUB-EXPERIMENT : Clump extraction at t=8.55 Myrs

Comparison with observational data

Magnetic field vs. density

Comparison with observational data

Mass vs. size

Clump extraction (I)

Step 1 : Search one or several snapshots in one or several runs for clumps above a given threshold

Find Clumps within these simulations:

The clump extraction is performed in the physical space. All cells whose density is larger than a specific threshold are selected. Then, applying a simple friend of friend algorithm, the spatially connected cells are identified and define a clump.

Mass distribution

7

Mass (solar mass)

8 9 10 11 12 13 14 15 16 17 18 19

Outputs the distributions of masses, mean densities and size of matching clumps

Clump extraction (II)

Step 2 : Browse the results of step 1 by mass range, density range and size range

(...)

Clump extraction (III)

Step 3 : Select a clump from the list presented

	to Add Parel	BACK TO THIS CLUMP IN SEARCH RESULTS EXTRACT AND DOWNLOAD CLUMP DATA DOWNLOAD ARCHIVE WITH ALL VALUES AND IMAGES CLUMP IMAGES			
SEE POSITION ON SNAPSHOT IMAGE →					
CLOWF PROPERTIES					
Angle	1.23 rad	Column Density in XY			
Density	3.707x10 ³ cm ⁻³				
Density Max	8.398x10 ³ cm ⁻³				
Magnetic Field (rms value)	7.08 microGauss				
Magnetic Field (X axis)	2.33 microGauss				
Magnetic Field (Y axis)	-3.00 microGauss	Column Density in XZ			
Magnetic Field (Z axis)	-2.26 microGauss				
Mass	5.08 solar mass				
Mass to Flux	1.75				
Number of cells	347				
Position of the Clump Density peak (X)	26.02 pc	Column Donoity in VZ			
Position of the Clump Density peak (Y)	26.95 pc	Column Density III 12			
Position of the Clump Density peak (Z)	28.07 pc				
Position of the Clump Gravity Center (X)	25.92 pc				
Position of the Clump Gravity Center (Y)	26.92 pc	Download PNG image			
Position of the Clump Gravity Center (Z)	28.06 pc				
Pressure	7.931x10 ⁻¹² erg.cm ⁻³	Also density, magnetic field intensity,			
Structure size	0.87 pc	temperature and pressure cuts			
Velocity Dispersion	0.22 cm.s ⁻¹				
Velocity (X axis)	-2.997x10 ⁴ cm.s ⁻¹				
Velocity (Y axis)	1.908x10 ⁴ cm.s ⁻¹				
Velocity (Z axis)	2.130x10 ³ cm.s ⁻¹				

Example of a forming dense core

It takes all kinds of clumps...

Clump extraction (IV)

BACK TO THIS CLUMP IN SEARCH RESULTS

EXTRACT AND DOWNLOAD CLUMP DATA

Extract a subset of clump data from the simulation	StarFormat clump extraction
or Calculate radiation transfer on this clump thanks to RADMC-3D	amr2cube-r2 -inp /SfsDB/raw/data/FORM_MC/ THY3D_grav_mag_bcl/output_00026 -out
What kind of values do you want to extract?	0.5380999999999999999999999999999999999999
a projection of column density	0.55665999999999999999-zmi 0.543920000000001 -
a cube of density	Zma 0.57912 -Ima 10 -typ 1 -sci 1.0 -til ascil
a cube of pressure	THY3D gray mag bel/output 00026
	Snapshot time: 8.550265 Myrs
a cube of velocity	Center position (pc): X=26.025; Y=26.953; Z=28.076
	Extraction size: 1.76 pc
	density (cm^-3)
Extraction box size: 1,76 pc (50,00 pc for the whole simulation)	
Centered on: X 26,025 (pc) Y 26,953 (pc) Z 28,076 (pc)	1 0 0 0.04124954D+02
	2 0 0 0.67942116D+02
Precision I	3 0 0 0.63388466D+02
(meximum) allowed for this size of extraction (10)	4 0 0 0.54006287D+02
(maximum L _{max} allowed for this size of extraction: 12)	5 0 0 0.52991573D+02
	6 0 0 0.50049461D+02
E-mail address (to receive a link to download the results): lexrier@lra.ens.fr	
	3 0 0 0.00000009D+02 9 0 0 0.89408325D+02
Extract Reset Cancel	10 0 0.10401249D+03
	11 0 0 0.89820068D+02
	12 0 0 0.45492512D+02
Extraction started	13 0 0 0.19445061D+02
	()
Data extraction is currently being processed. You will receive an e-mail at your address levrier@lra.ens.fr with a link to download the file in a few minutes.	FITS files expected in the near future
You can now close this window or click here to perform another extraction.	

Post-processed radiative transfer with RADMC-3D

BACK TO THIS CLUMP IN SEARCH RESULTS

EXTRACT AND DOWNLOAD CLUMP DATA

RADMC-3D

http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

$\Theta \Theta \Theta$				🕅 i	dl			
	Quit Viewer		Write Ima	ige	🗐 mouse rotate 🗐 lin	MaxLog X 6.00	Saturate 0.03	
		Ì			Render	Npix 100 Size 3.00E+00	Inclination Ĭ Phi Ĭ	60,00 30,00
						86	j12.41 mu	J.00
0.5					69		10.00 mu	1.00
					54			1.00
-0.5				-	RGB rendering in	of radiative three color ba	transfer re ands	sults
-0.3		-0.5	T 0.D	0.5				

- Radiative transfer code using Monte-Carlo approach
- Works with Cartesian or spherical geometries, and compatible with AMR grids
- Interfaces with simulation codes FLASH, RAMSES, ZEUS
- Graphical User Interface in IDL for exploration of code results

Other simulations in the STARFORMAT database

PROJECT : Molecular cloud evolution in decaying turbulence

- → Contacts : Patrick Hennebelle, Sami Dib, Edouard Audit
- Scientific case for the simulations : This project aims at describing the evolution of a turbulent molecular cloud in which the turbulence is decaying.
- Description of the simulations : Initially the gas density and the magnetic field are uniform while a turbulent velocity field is setup. Turbulence is not driven and is therefore decaying during the cloud evolution. The box is periodic in all directions. Self-gravity is included and the gas is assumed to be isothermal. Under the influence of compressible modes and gravity, density fluctuations are generated. Some of them are self-gravitating and collapse. This project is well suited to compare with dense regions of molecular clouds in which stars are or will be formed. In particular, the strength of the magnetic field is varied and the consequences it has on the clouds can be investigated.

Column densities at t=1.16 Myrs

$$\beta = \frac{2\mu_0 nk_B T}{B^2} = \frac{P_{\text{therm}}}{P_{\text{mag}}}$$

Other simulations in the STARFORMAT database

PROJECT : Solenoidal vs. compressive turbulence forcing

- Contacts : Christoph Federrath, Julia Roman-Duval, Ralf Klessen, Wolfram Schmidt, Mordecai-Mark Mac Low
- Scientific case for the simulations : This project investigates the influence of different forcing (i.e., kinetic energy injection) on turbulent flows in the ISM.

Description of the simulations : The simulations are highly simplified in the sense that periodic boundary conditions are applied in all three dimensions of the simulation and a forcing generator is used to drive the turbulence in this box. This forcing generator is constructed such that it excites correlated turbulent fluctuations on large scales, roughly corresponding to half the box size. The turbulence then develops self-consistently on smaller scales and can be studied in terms of temporal and spatial statistics. Two limiting cases of forcing are provided : solenoidal (divergence-free) and compressive (curl-free).

References : <u>Federrath et al. 2008</u>, <u>ApJ 688</u>, <u>L79</u>, <u>Federrath et al. 2009</u>, <u>ApJ 692</u>, <u>364</u>, <u>Federrath et al. 2010</u>, <u>A&A 512</u>, <u>A81</u>

Code reference and description : The simulations have been performed with the FLASH3 code. This is a 3D AMR code for hydrodynamic and MHD studies with multi-physics capabilities.

Simulations to be added to the database

PROJECT : Chemistry simulations in the dynamic ISM

→ **Contacts :** Simon Glover, Faviola Molina, Christoph Federrath, Ralf Klessen

- Scientific case for the simulations : Consistent models of ISM dynamics require simultaneous treatment of chemical reactions and radiative transfer, in particular with respect to the formation of molecular hydrogen.
- Description of the simulations : The simulations include MHD and turbulent forcing, a simplified network of time-dependent chemistry, focussing on a few dominant species, e.g. H₂, which forms rapidly in shocks and gets slowly destroyed in low density regions. Consequently, turbulence greatly enhances the formation rate of molecular hydrogen.

References : Glover & Mac Low 2007, ApJ, 659, 1317

Simulations to be added to the database

PROJECT : Core collapse simulations

→ **Contacts :** Marc Joos, Patrick Hennebelle, Benoît Commerçon

Scientific case for the simulations : The simulations describe the collapse of dense cores under their self-gravity, and aim to study the influence of turbulence and magnetic field in the process of fragmentation leading to the formation of several prestellar objects.

Allen et al. 03, Machida et al. 05, 07, 08, Fromang et al. 06, Galli et al. 06, Banerjee & Pudritz 06, Hennebelle & Fromang 08, Hennebelle & Teyssier 08, Price & Bate 07,08, Mellon & Li 08, 09

Overview of the talk

The project

- Scientific context and questions
- Overview of the project
- Structure of the database

An example simulation : converging flows

- Accessing simulation results
- Statistics of "clumps" and comparison with observational data
- On-the-fly clump extraction
- Post-processed radiative transfer with RADMC-3D
- The other simulations in the database

Post-processed chemistry on MHD simulations

- Application of the Meudon PDR code on lines of sight through MHD simulation cubes
- Evidence for "dark" molecular gas, not seen in CO
- Further ideas beyond the ID PDR code

Simulated ALMA observations with GILDAS

- Simulated observations of large-scale MHD flows
- Simulated observations of collapsing cores
- Interpretation of observations

Detailed chemistry on MHD simulations

A case study : the 158 µm [CII] line

-10

/(°)

Detailed chemistry on MHD simulations

Method : Extract one-dimensional lines of sight through a simulation cube and run the PDR code on these.

The Meudon PDR code

Heavy computations : a few hours per "clump"

Grid computation would be ideal

"Dark gas"

Abundances computed by the PDR code in the XY plane

Levrier et al. (in prep)

A significant fraction of the molecular region is not seen in CO, but rather traced by C or C+

Artificial "stripes" due to shadowing in the onedimensional PDR code

Beyond the 1D PDR code

Overview of the talk

The project

- Scientific context and questions
- Overview of the project
- Structure of the database

An example simulation : converging flows

- Accessing simulation results
- Statistics of "clumps" and comparison with observational data
- On-the-fly clump extraction
- Post-processed radiative transfer with RADMC-3D
- The other simulations in the database

Post-processed chemistry on MHD simulations

- Application of the Meudon PDR code on lines of sight through MHD simulation cubes
- Evidence for "dark" molecular gas, not seen in CO
- Further ideas beyond the ID PDR code

Simulated ALMA observations with GILDAS

- Simulated observations of large-scale MHD flows
- Simulated observations of collapsing cores
- Interpretation of observations

The ALMA Simulator in GILDAS

An ALMA / ALMA Compact Array (ACA) / Single Dish imaging simulator

- Detailed description in ALMA memo 398 (Pety, Gueth, Guilloteau)
- Developed for studying the impact of ACA on wide-field imaging capabilities
- Scientific preparation of ALMA (e.g. Wolf et al.)
- Included in GILDAS' MAPPING software

http://www.iram.fr/IRAMFR/GILDAS/

I. Inputs

Iram

- Source position and size : mosaicing —
- Model brightness distribution
- Array configuration
- Frequency (only continuum)
- Type of observation (ALMA + ACA + Single Dish)

2. Visibilities Visibilities = $Cover \times FT[Beam \times Model]$

- Cover from source position, array configuration and time range
- Beam from antenna size
- Source-calibrator loop
- Possibility to add pointing errors, atmospheric phase noise, calibration errors

3. Imaging

- Calibration (standard, fast switching, water vapor radiometry)
- Deconvolution (Standard CLEAN based methods)
- Input and output comparison

Up-to-date ALMA configurations

	🕘 🕘 💮 🛛 🕅 🛛 Pa	rar				
GO ABORT			HE	LP	ALMA array setup	
LOAD COMPUTE COMPARE	DISPLAY	PERT			Diameter (fixed)	12
					Array name	z
Input model file	/levrier/Sim	ulator/sandbox/:	s₊9dfį̇́	File	Configuration name	ģ
Output directory name	*.			File	000	-
Cinulation bind			Cha		HLH array setup	
SIMULATION KIND	HLI1H+5D		Lho	1Ces	Diameter (m)	7
Observation Setup	SHOW SOURCE	Parameters	Hel	Р	Array name	a
Configuration Setup	SHOW CONF	Parameters	Hel		Configuration name	7
Pointing Errors	SHOW POINT	Parameters	Hel	P	 Single Dish	-
Amplitude conditions	SHOW AMP	Parameters	Hel	P	Diameter (m)	1
Phase conditions	SHOW PHASE	Parameters	Hel	P	Number of antennas	Į Į
Deconvolution setup	COMPUTE	Parameters	Hel	P		-
Display results	DISPLAY	Parameters	Hel	P		801
Expert setup	EXPERT	Parameters	Hel	Р		
File location	SETUP	Parameters	Hel	Р		

- From 90 m to 9.5 km radius
- CASA to GILDAS format conversion

Thanks to J. Pety, A. Wooten, I. Heywood, K.-I. Morita

500

-1000

-500

Û

1000

ALMA simulator on MHD simulations

Simulated observations of large-scale flows

Simulations for different configurations

- Spatial frequency filtering
- Flux loss
- Importance of single-dish measurements

"Line" mapping using batch mode

Simulated ALMA observations of collapsing cores

ALMA band 7 (.....) images for configuration #10

A new path for interpreting observations

Observations with IRAM 30 m telescope

Peretto, André & Belloche, 2006

Continuum @ 1.2mm

Position-Velocity diagram in the $N_2H^+(101-012)$ line

SPH simulation with 5,000,000 particles

Peretto, Hennebelle & André, 2007

Synthetic Position-Velocity Diagram

Conclusions and perspectives

An evolving database...

- A leading, long-ranging effort to bring together theoretical, numerical and observational expertise in ISM and star formation questions
- Already allows user-friendly access to several numerical simulation results,, with many more to come, using VO-compliant models and protocols
- The need for new simulations / statistics / post-processing is an evolving process, motivated by dicussions with observers and increasing computing capabilities

Perspectives

- Clean-up RAMSES/RADMC, RAMSES/PDR and RAMSES/GILDAS connections
- Develop Lagrangian particle-based approach to estimate clump lifetimes
- Open up the database to outside groups... Simulations and expertise welcome !