The ISM for cosmologists

C ESA/HFI&FLI consortia/C&E Photos

F. Levrier LRA - LERMA / ENS / Observatoire de Paris

The nature and role of galactic winds through cosmic time - Lyon - 28/10/2013

CO gas in Planck data

The cycle of interstellar matter

Turbulence in the interstellar medium ?

THE EVOLUTION OF GALAXIES AND STARS

C. F. VON WEIZSÄCKER Max Planck Institut, Göttingen Received May 17, 1951

ABSTRACT

I. Aims of the theory.—A hydrodynamical scheme of evolution is proposed, confined to events after the time when the average density in the universe was comparable to the density inside a galaxy at our time.

II. Hydrodynamical conditions.—Gas in cosmic space is moving according to hydrodynamics, mostly in a turbulent and compressible manner. Dust is carried with the gas, probably by magnetic coupling. Star systems cannot be described hydrodynamically and hence do not show turbulence and supersonic compressibility.

III. The spectral law of incompressible turbulence.—The relative velocity of two points at a distance l is proportional to $l^{1/3}$. This is deduced from the picture of a hierarchy of eddies.

IV. Compressibility and interstellar clouds.—A hierarchy of clouds is considered.

Power spectra in various phases

Starforming and non-starforming clouds

Filamentary structures at many scales

IRIS 25+60+100µm

Miville-Deschênes & Lagache, 2005

Dust and CO gas in the Polaris Flare

Miville-Deschênes et al., 2010

Intermittent dissipation of turbulence

Centroid Velocity Increments

Loci of extreme CVI

Falgarone, Pety & Hily-Blant, 2009

The molecular universe

About 200 species detected in the ISM

OUT OF THIS WORLD

A wealth of molecules is found in interstellar clouds

2 atoms		3 atoms		4 atoms			5 atoms	
H2 ALF ALCL C2 CH CH CN CO CO CO CO CO CO CO CO CO CO CO CO CO	N0 NS NaCl OH PN S0 S0* SiN Si0 SiS CS HF SH Fe0	C ₃ MgCN C ₂ H MgN0 C ₂ O N ₂ H ⁺ C ₂ S N ₂ O CH ₂ NaCN HCN OCS HCO SO ₂ HCO* c-SiC HCC* CO ₂ HCC* NH ₂ H ₂ O H ₃ * H ₂ S SiCN HNC ALNC HNO	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	6 atoms C ₅ H CH ₃ SH l-H ₂ C ₄ HC ₃ NH [•] C ₂ H ₄ HC ₂ CH0 CH ₃ CN NH ₂ CH0 CH ₃ NC C ₅ N CH ₃ OH		7 atoms C_6H CH_2CHCN CH_3C_2H HC_5N $HC0CH_3$ NH_2CH_3 $c-C_2H_4O$		8 atoms CH ₃ C ₃ N HCOOCH ₃ CH ₃ COOH C ₇ H CH ₂ OHCHO		0	9 atoms CH ₃ C ₄ H CH ₃ CH ₂ CN (CH ₃) ₂ O CH ₃ CH ₂ OH HC ₂ N C ₈ H
NOTE: Evidence suggests that much larger molecules such as polycyclic aromatic hydrocarbons and fullerenes are also present. SOURCE: National Radio			0	CH ₂ CH0H 10 atoms CH ₃ C ₅ N [CH ₃] ₂ C0 NH ₂ CH ₂ C000		11 ator HC ₉ N	ns	13 atoms HC ₁₁ N

Among them hydrides

Gerin et al. (2010), Neufeld et al. (2010), De Luca et al. (2012), Neufeld et al. (2012), Lis et al. (2010), Parise et al. (2012), Bacmann et al. (2010)

- One heavy atom (C,N,O,S,F,CI) plus a number of H
- Tracers of physical and chemical processes
- First building blocks of the molecular ISM

The Meudon PDR code

Stationary ID model, including :

Outputs:

UV radiative transfer:

Absorption in molecular lines Absorption in the continuum (dust) 10000's of lines

Chemistry :

Several hundred chemical species Network of sevral thousand chemical reactions Photoionization Cosmic ray ionization

Statistical equilibrium of level populations

Radiative and collisional excitations and de-excitations Photodissociation

Thermal balance:

Photoelectric effect Chemistry Cosmic rays Atomic and molecular cooling

Le Bourlot et al. 1999 Le Petit et al. 2006 Goicoechea & Le Bourlot 2007 Gonzalez-Garcia et al. 2008

http://pdr.obspm.fr/

Local quantities :

Abundance and excitation of species Temperature of gas and duts Detailed heating and cooling rates Energy density Gas and grain temperatures Chemical reaction rates

Integrated quantities on the line of sight :

Species column densities Line intensities Absorption of the radiation field Spectra

Compressible MHD turbulence simulation

Structures along the line of sight

Main H and C bearers in the MHD/PDR simulation

- C⁺ closely follows the total gas density, except in the densest regions.
- CO only in the densest regions

Density fluctuations vs. Uniform density : CH

Density fluctuations vs. Uniform density : CO

Simulated observations in CO and C⁺

Levrier et al. 2012

Velusamy et al. 2010

The TDR model

Magnetized modified Burgers vortex

$$\omega_z(r) = \omega_0 \cdot \mathrm{e}^{-\frac{a}{4\nu\beta} \left[1 - \mathrm{e}^{-\beta r^2}\right]}$$

Q : Turbulent rate of strain

Joulain et al., 1998 Godard et al., 2009

Magnetized vortices: ~ 50 AU ~ 100 years lifetime

Dissipation leads to warm chemistry

Thermal and chemical relaxation last up to 4.10⁴ years

Free parameters a ; $n_{
m H}$; $A_{
m V}$

3 phases : active and relaxing vortices, ambient medium

Chemical enrichment by turbulent dissipation

The CH⁺ puzzle solved ?

Dissipation processes

2D cut through a 512³ incompressible turbulence simulation with the ANK code

Momferratos, Lesaffre, Falgarone, in prep.

Chemical enrichment in the wakes of shocks

2D decaying turbulence simulation with chemical coupling

- Colour scale : CO abundances
- Contours : Regions of high viscous heating

Lesaffre et al., in prep

Shocks in SNR : W28F

Conclusions

- Observations provide kinematical and chemical clues of the small-scale (mpc) dissipation of ISM turbulence
- This dissipation may be in the form of vortices or low-velocity shocks
- What is the impact of cosmic rays as another source of energy for chemistry ? How do they propagate in the fractal ISM ?
- What is the role of the magnetic field in the formation of dense self-gravitating filaments and ultimately dense cores and stars ?
- What is the interaction between the magnetic field and structures of intense velocity shears at small scales ?
- How can we properly model the turbulent cascade when it requires some 10⁷ grid points per dimension ?