Clues on interstellar magnetized turbulence from Planck observations

François LEVRIER

ISM Jamboree, ENS Paris, 18.11.2016

Talk outline

• Lightning-fast introduction...

• Planck thermal dust polarization and MHD turbulence

• Current work (also talk by F. Boulanger)

Vorticity (JHU)

Turbulence

« Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity. » Lewis Fry Richardson (1920)

Current (UCSD, Berkeley Lab)

- Kolmogorov's K41 theory for HD turbulence : incompressible, homogeneous, isotropic cascade
- Scaling laws and self-similarity
- Intermittency : dissipation of energy occurs in bursts, localized in time and space
- Modification of scaling laws from compressibility and magnetic fields (MHD turbulence)

Turbulence in the ISM

- Suprathermal linewidths, scaling with the size of structures
- Self-similarity of structures across many scales
- Intermittency at small scales : non-Gaussian wings in distributions of centroid velocity increments

Magnetic fields in the Milky Way

- Coupled to the gas, provides balance with gravity, controls the propagation of cosmic rays
- Generated from primordial seed fields via a coupling of differential rotation and Coriolis force
- Superposition of a large-scale field following spiral arms and of a turbulent component

$$B = B_0 + B_t$$
~ a few μ G ~ a few μ G
Haverkorn et al. (2008)

Measurement methods

Notation	Observational signatures
$B_{\text{tot},\perp}^2 = B_{\text{turb},\perp}^2 + B_{\text{reg},\perp}^2$	Total synchrotron intensity
$B_{\text{turb},\perp}^2 = B_{\text{iso},\perp}^2 + B_{\text{aniso},\perp}^2$	Total synchrotron emission, partly polarized
$B_{\rm iso,\perp} \ (= \sqrt{2/3} B_{\rm iso})$	Unpolarized synchr. intensity, beam depolarization, Faraday depolarization
$B_{\rm iso,\parallel} \ (= \sqrt{1/3}B_{\rm iso})$	Faraday depolarization
$B_{\mathrm{ord},\perp}^2 = B_{\mathrm{aniso},\perp}^2 + B_{\mathrm{reg},\perp}^2$	Intensity and vectors of radio, optical, IR & submm pol.
$B_{ m aniso, \perp}$	Intensity and vectors of radio, optical, IR & submm pol., Faraday depolarization
$B_{ m reg, \perp}$	Intensity and vectors of radio, optical, IR & submm pol., Goldreich-Kylafis effect
$B_{ m reg,\parallel}$	Faraday rotation + depol., longitudinal Zeeman effect

Dust, magnetic fields and polarization

- Aspherical, charged, rotating dust grains statistically align in the local magnetic field
- Background starlight emerges polarized parallel to the magnetic field
- Polarized thermal dust emission arises perpendicularly to the magnetic field

The Planck view of the Galactic magnetic field

Total intensity and « drapery » showing the direction of the magnetic field

Properties of large-scale thermal dust polarization

Low polarization fractions in the Galactic Plane and some highly polarized regions
Thin filamentary structures of low polarization with no material counterpart

Update in early 2017...

Spatial structure of the polarization angle map

- Strongly anti-correlated with the polarization fraction
- Low polarization fractions found where the polarization angle direction changes abruptly
- \bullet Increased lag δ flattens the anti-correlation

Planck Collaboration Int. XIX (2015)

Comparison with a simulation of anisotropic MHD turbulence

- ullet Simulations reproduce the decrease of the maximum polarization fraction with N_H in that range
- The global anti-correlation with the polarization angle dispersion function is reproduced, with a shift

The angular power spectrum of polarized thermal dust emission

E and B thermal dust emission angular power spectra outside the Galactic plane well fit by power laws
B mode power attributable to dust in the BICEP2 field compatible with reported detection

BICEP2 Collaboration (2014)

The angular power spectrum of polarized thermal dust emission

Amplitudes vary approximately as the square of average dust brightness in the selected region
Asymmetry in the E and B modes : twice as much power in E modes

Origin of the E/B power asymmetry

- Identification of 259 matter filaments longer than 2° in the high Galactic latitude sky using the Hessian
- Preferential alignment of the filaments with the magnetic field
- Stacking of Stokes parameter maps rotated along the filaments leads to mean polarization fraction
- E/B asymmetry may be accounted for by this preferential alignment

A Gaussian model of the polarized sky

Magnetic field $B = B_0 + B_t$ Uniform field Turbulent field

• A superposition of variously polarized layers (turbulent cells ?)

- Turbulent field : 3D Gaussian random variable
- Analysis of the Southern Galactic cap
 - Spatial power spectrum unconstrained $C_\ell \propto \ell^{lpha_{
 m M}}$
 - Direction of the large-scale field $(l_0, b_0) = (70 \pm 5^{\circ}, 24 \pm 5^{\circ})$
 - Turbulent-to-mean ratio $f_{\mathrm{M}}=0.9\pm0.1$
 - Number of layers $N = 7 \pm 2$
 - Intrinsic polarization fraction $p_0 = 26 \pm 3\%$

Observations (black dots) vs. Simulations (colored regions)

Polarization angle relative to the large-scale field

Perspectives on modelling polarized thermal dust emission

• Stacking of a small number of polarized emission layers, with POS spatial correlations

• Turbulent magnetic field modelled along the LOS, no POS correlation from pixel to pixel

WMAP 23 GHz polarized synchrotron data	Miville-Deschênes et al. (2008)		
Models of polarized thermal dust emission a	at 150 GHz	O'Dea et al. (201	2)

Modelling polarized thermal dust emission with fBm fields

We wish to constrain the statistical properties of the interstellar B field

Dust density : exponentiated fractional Brownian motion field (fBm)

Modelling polarized thermal dust emission with fBm fields

Synthetic magnetic field spectral index

Magnetic field spectral index

Shifted vector potential spectral index

Parameter space exploration

- Parameters are spectral indices, fluctuation levels, angle of the mean field and depth on the LOS
- Simulated polarization maps characterized by PDFs, power spectra, and correlations
- Monte-Carlo Markov Chain exploration of parameter likelihood given input polarization maps

MesoPSL

Туре	From	Method
PDF	$i, q, u, p_{MAS}, \psi, S$	Bin by bin fit of the histogram
Power spectrum	I_m, Q_m, U_m	Bin by bin fit of the power spectrum
Correlation	$\{S, p_{MAS}\}$	Bin by bin fit of the scatter plot

Validation of the method

 $-\alpha_{\rm M}$

Levrier et al. (in prep)

Application to Planck data on the Polaris Flare

Planck Polaris Flare maps

Polarization fraction

Polarization angle

Angular dispersion

Simulations maps with best fitting parameters

PDFs of observables (Polaris and best-fit model)

Levrier et al. (in prep)

Power spectra of observables (Polaris and best-fit model)

Correlation polarization fraction - angular dispersion

