Ambipolar diffusion and polarized thermal dust emission

-3,000

3,000

F. Levrier

0

2.00

ISM Jamboree 30/01/2014

Simulating polarized thermal dust emission

Following Lee & Draine 85 and others...

Simulations with and without AD

Simulations by E. Ntormousi & P. Hennebelle

L=1pc, I_{max}=11

Rotating the anisotropic input cubes

Regular gridding at *N***=512 : 2 mpc pixels**

Simulated polarization fraction maps

With ambipolar diffusion

Ideal MHD

Distance : 100 pc Instrumental beam : 30 arcsecs FWHM corresponding to 15 mpc No noise...

Simulated polarization fraction maps

With ambipolar diffusion

Ideal MHD

Distance : 100 pc Instrumental beam : 30 arcsecs FWHM corresponding to 15 mpc No noise...

Comparison of polarization fractions

Comparison of column densities

Polarization fraction vs. column density

With ambipolar diffusion

3

 00°

3

Ideal MHD

Angle dispersions vs. polarization fractions

With ambipolar diffusion

Ideal MHD

Small decrease of the angular dispersion from ideal MHD to AD MHD

Size of structures above a given p

Thresholding of *p* maps Identification of connected structures Computation of the area of each structure

Size of structures above a given p

Statistical variance may be large Structures cut by the edges of the map Difference in overall *p* not taken into account

Temporary conclusions

Geometrical interpretation of the polarization fraction variations

With ambipolar diffusion

Ideal MHD

Small decrease of the angular dispersion from ideal MHD to AD MHD

Structures in AD MHD polarization simulations seem less « mottled » than in ideal MHD