Polarized thermal dust emission as seen by Planck: A comparison with MHD simulations and lessons from a toy model

Planck Collaboration, F. Levrier, J. Neveu

LERMA, Observatoire de Paris, PSL, CNRS, UPMC, ENS Paris

Planck intermediate results. XX. A&A, 576, 105, 2015

Copyright ESA and the *Planck* Collaboration

planck

OPLANCK

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

di Milano

Polarized thermal dust emission essentials

- Grains are aspherical, charged, rotating, and aligned preferentially perpendicularly to the local magnetic field
- Cross sections are proportional to the size, so grains emit more radiation parallel to their long axes
- Polarized thermal emission arises, with an orientation perpendicular to the local magnetic field

See talk by J.-P. Bernard, this session

Planck maps of nearby molecular clouds

Planck 2013 results. XI. A&A, 571, 11, 2014

Planck maps of nearby molecular clouds

$$p = \frac{\sqrt{Q^2 + U^2}}{I}$$

Planck maps of nearby molecular clouds

16' lag
$$\mathcal{S}(m{r}, m{\delta}) = \sqrt{rac{1}{N} \sum_{i=1}^{N} \left[\psi(m{r} + m{\delta}_i) - \psi(m{r})
ight]^2}$$

Correlations in Planck polarization maps

Anti-correlation robust with respect to polarization S/N

Correlations in Planck polarization maps

Anti-correlation robust with respect to polarization S/N

Correlations in Planck polarization maps

Building simulated polarized emission maps

- 18 pc subset of a 50 pc MHD simulation cube
- Converging flows of magnetized warm gas
- Mean magnetic field along the flows
- Rotation of the cube, placed at 100 pc
- Simulated Stokes maps smoothed at 15'

$$I = \int S_{\nu} e^{-\tau_{\nu}} \left[1 - p_0 \left(\cos^2 \gamma - \frac{2}{3} \right) \right] d\tau_{\nu}$$

$$Q = \int p_0 S_{\nu} e^{-\tau_{\nu}} \cos(2\phi) \cos^2 \gamma d\tau_{\nu}$$

$$U = \int p_0 S_{\nu} e^{-\tau_{\nu}} \sin(2\phi) \cos^2 \gamma d\tau_{\nu}$$

« Intrinsic dust polarization parameter »

$$p_0 = 0.2$$

Opacity at 353 GHz (Planck Collaboration XXXI, 2014)

$$\tau_{353}/N_{\rm H} = 1.2 \times 10^{-26} \, {\rm cm}^2$$

Dust temperature

$$T_d = 18 \,\mathrm{K}$$

Side view

Line-of-sight view

starformat.obspm.fr

Following Lee & Draine 85 and others...

Simulated polarized thermal dust emission maps

Anti-correlation p and N_H Anti-correlation p and SLower polarization fractions when along the mean field

Simulations vs. Observations

Simulations reproduce very well the decrease of p_{max} with N_{H} in the range 10^{21} to 2×10^{22} cm⁻²

Simulations vs. Observations

Global trend is reproduced, but simulations tend to have too high an angular dispersion

Building toy models of the turbulent ISM

We wish to constrain the statistical properties of the interstellar B field

Dust density: exponentiated fractional Brownian motion field (fBm)

Building toy models of the turbulent ISM

Magnetic field from fBm vector potential components

- lacktriangle Power-law power spectrum with index $\,eta_B=eta_A-2\,$
- Divergence-free by construction
- Gaussian distribution with zero mean
- Possibility to add a large-scale uniform field

Physical parameters and observables

Physical parameters of the input cubes

- **Spectral indices**
- Depth

Spectral indices
$$\beta_n, \, \beta_B, \, \frac{\sigma_n}{\langle n_{
m d} \rangle}, \, \frac{\sigma_B}{\langle B \rangle}, \, d$$

Observables derived from simulated Stokes maps

- Spectral indices of I, Q, U, P
- Fluctuation ratios of I, P
- Position of PDF maximum of S, p, $|\nabla P|/P$
- Correlation \mathcal{S} vs. p
- Correlation S vs. $|\nabla P|/P$

Validating the method

A least-square analysis validates the method on simulated maps

Conclusions

Decrease of p_{max} with N_H well reproduced by simulations

Anticorrelation between polarization fraction and angle dispersion underlines the role of the magnetic field

Development of a promising method to recover statistical properties of the interstellar B field