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FRANGOIS LEVRIER

Date of birth : August 3" 1975

Nationality : French

Position : Maitre de conférences classe normale, Section 34 of CNU (“Astronomy, astrophysics”)
Laboratory : LRA, LERMA, Ecole Normale Supérieure de Paris, Observatoire de Paris, UPMC
Work address : 24 rue Lhomond, 75231 Paris CEDEX 05

Work phone number : +33 1 44 32 39 93

Home address : 22 rue de la fidélité, 75010 Paris

Home phone number : +33 1 42 84 03 39

Mobile phone number : +33 6 82 05 57 29

e-mail address : francois.levrier@ens.fr

Positions

Since September 2008
Maitre de conférences, Ecole Normale Supérieure de Paris

August 2007 - August 2008
Post-doctoral research assistant, University of Oxford, UK, in the framework of the European FP7 pro-
gram SKADS (Square Kilometer Array Design Studies), working with Professor Steve Rawlings.

September 2004 - June 2007 then September 2009 - June 2010 .
Examiner in physics (CPGE, section MPSI), Lycée Janson-de-Sailly (Paris 16°).

September 2003 - July 2007
“Agrégé-préparateur”, Centre Interuniversitaire de préparation & l’agrégation externe de sciences phy-
siques, option physique (ENS Paris, Universities Paris VI, Paris VII and Paris XI).

September 2000 - June 2003
Teaching assistant (“Moniteur”), University Paris VII

Academic studies

September 2000 - December 2004
Ph.D thesis at University Paris VII, under the supervision of Edith Falgarone (LERMA, ENS Paris)
and Francois Viallefond (LERMA, Observatoire de Paris) : Disorder and coherence in structures of the
interstellar medium : statistical analysis, interferometric filtering and radiative transfer. Mention “tres
honorable”. Composition of the jury : Pr. J. Bartlett, Dr. S. Guilloteau, Pr. A. Lannes, Pr. Dr. J. Stutzki,
Dr. E. Falgarone, Dr. F. Viallefond.

July 2000

Successful candidate for “agrégation externe de sciences physiques, option physique” (315%).

September 1999 - June 2000
Preparation of “agrégation externe de sciences physiques, option physique”, within the “Centre Interuni-
versitaire de Montrouge” (ENS Paris, Universities Paris VI, Paris VII and Paris XI).

April 1999 - June 1999
Research internship at Observatoire de Paris, under the supervision of Frangois Viallefond (LERMA, Ob-

servatoire de Paris) and Edith Falgarone (LERMA, ENS Paris) : Studying the response of interferometers
to fractal brightness distributions.

September 1998 - June 1999
DEA (Master) “Astrophysique et techniques spatiales”, University Paris VII, mention “bien”.
Graduate from Magistere Interuniversitaire de Physique.

January 1998 - June 1998
Research internship under the supervision of Trinh Xuan Thuan (University of Virginia, Charlottesville)
and John Hibbard (NRAO, Charlottesville) : The HI gas distribution and kinematics in four blue compact



dwarf galazies.

September 1996 - June 1998
Licence de Physique, University Paris VI, mention “assez bien”.
Maitrise de Physique, University Paris VI, mention “bien”.

September 1996 - June 2000
Student at Ecole Normale Supérieure de Paris (admission via the “Mathematics and Physics” competi-
tion).

September 1993 - June 1996
“Classes préparatoires aux grandes écoles” (CPGE), Lycée Condorcet (Paris).

June 1993

Baccalauréat série C (“Mathematics and Physics”), mention “bien”.

RESEARCH ACTIVITIES

My research activity within the ENS team of LERMA revolves around the structure and dynamics of
interstellar gas and dust, from the most diffuse regions of the interstellar medium (ISM) to the initial
stages of star formation, with an emphasis on methods related to observational simulations. This approach,
which I have been developing since my doctoral work, allows to establish firmly the connection between
modelling and observations, and is therefore paramount to our understanding of how the ISM works. The
following paragraphs give a brief overview of some of the avenues I have explored.

m Scientific results

e Comparison of Planck polarization data at 353 GHz towards molecular clouds with synthetic maps
derived from numerical simulations of magnetized, turbulent ISM flows. This work, which I led within
the Planck Collaboration (Planck Intermediate Results XX, 2015), shows that the decrease of linear
polarization fraction of dust thermal emission with increasing gas column density and with increasing
local dispersion of the polarization angle is basically linked to the topology of the magnetic field, at least
at the scales probed by Planck.

e Complete analysis of the statistical bias in polarization observations, related to the non-linear
relation between Stokes parameters (I, Q,U) and the usual observables which are polarization fraction
and angle (p, ). This work led to three publications (Plaszczynski et al. 2014, Montier et al. 2015a,b),
with one more currently being revised (Alina et al. 2016).

e Full study of the inverse problem that is the recovery of statistical properties of the interstellar
magnetic field from maps of polarized submillimetre thermal dust emission. This work, in collaboration
with Jérémy Neveu (now at LAL, Orsay), is based on a grid of models for the 3D dust density and the
magnetic field with prescribed statistical properties, and on a maximume-likelihood analysis. It is the topic
of a paper currently in preparation (Levrier et al. 2016).

e Analysis of relative orientations between structures of interstellar matter and the magnetic field. We
note an evolution of these relative orientations as a function of column density, from a configuration in
which diffuse matter filaments tend to be preferentially aligned with the magnetic field to a configuration
in which this field is preferentially perpendicular to dense, self-gravitating filaments (Planck Intermediate
Results XXXV, 2015).

e Construction of synthetic maps of continuum submillimetre thermal dust emission in simulations of
prestellar cores (with B. Commergon, ENS Lyon), using the ALMA (Atacama Large Millimeter Array)
simulator developed by J. Pety, S. Guilloteau, and F. Guth (IRAM Grenoble). These maps allow the
determination of the instrumental configurations which are best suited to estimate the magnetization
level in these objects (Commergon et al. 2012)..

e Construction of synthetic maps of continuum submillimetre thermal dust emission and molecular
line emission in simulations of the formation and evolution of Milky-Way-like galaxies over cosmic times
(work in progress in collaboration with J. Devriendt, University of Oxford).

e Simulations of the physical and chemical structure of a molecular cloud, using the Meudon PDR
Code (Levrier et al. 2012). By considering the illumination of density profiles extracted from numerical
simulations of ISM turbulent flows, I could show that abundances of several key molecular species, and



their correlations, are better reproduced when taking into account the fractal structure of the medium.
e Application of these simulations to the determination of the accuracy with which the ionization
rate by cosmic rays is well determined by measurements of the column density of H;r (Gerin et al. 2012).
This work shows that usual diagnostics tend to underestimate this ionization rate.
e Statistical analysis of synthetic models of interstellar turbulence. This work (Miville-Deschénes et
al. 2003, Levrier 2004) established the link between statistical properties of the interstellar velocity field
and usual spectro-imagery observables (channel maps, intensity moment maps).

m Participation to observational and instrumental projects

e Participation to the analysis of Planck polarization data at 353 GHz.

e Participation to the scientific definition of ” Galactic astrophysics” aspects in space mission projects
(simulation of C11 [158 pm] emission in the diffuse ISM for SPICA/SAFARI ; simulation of submillimetre
dust emission for Millimetron and COrE+4+) and ground-based instrumental projects (diagnostics of
interstellar turbulence with SKA, in particular).

e Participation to observational projects with ALMA to study the topology of the magnetic field
at various scales, in particular in a protostellar object (HH212, PI : C. Codella) and in a spiral galaxy
(NGC1566, PI: A. Hughes).

e Participation to observational projects with IRAM instruments (observation of the prestellar core
Barnard 1b with Plateau de Bure, PI : M. Gerin; molecular survey of the Orion B molecular cloud in
the millimetre range with the 30 m radiotelescope, PI : J. Pety & J. Orkisz).

m Software developments

e Development of mapping tools (S3-Tools) for simulated catalogues of extragalactic sources in the
framework of the design of SKA (Wilman et al. 2008, Obreschkow et al. 2009).

e Development of a joint IDL-Python library for the analysis of polarization data, in collaboration
with L. Montier (IRAP Toulouse).

e Participation to the development of the STARFORMAT http://starformat.obspm.fr platform
(PI : P. Hennebelle) aimed at spreading results of numerical simulations of ISM flows.

e Development of the online access to the ALMA simulator within the “Numerical ISM” platform
http://ism.obspm.fr, led by Franck Le Petit (LERMA, Meudon).

e Development of fitting methods for radiative transfer models with the RADEX code, to help with the
analysis of spectroscopic observations towards massive star-forming regions (Leurini et al. 2015, Gusdorf
et al. 2016).

TEACHING ACTIVITIES

m Préparation a I'agrégation de sciences physiques [2008 - ..., Master 2 level, 120h per year]
e Supervision of laboratory work (electronics, optics, mechanics, thermodynamics, . ..)
e Course “Experimental uncertainties”
e Correction of both written and oral tests
e Participation to the design and realization of new experiments

m Formation Interuniversitaire de Physique [2008 - ..., Licence 3 level, 15h per year]

e Exercise sessions “Introductory astrophysics” complementing the course, taught from 2008 to 2011
by Steve Balbus, and from 2012 by Patrick Hennebelle (topics covered include radiative transfer, forma-
tion, structure, and evolution of stars, compact objects and cosmology).

m Master “Astronomie, Astrophysique et Ingénierie Spatiale” [2013 - ..., Master 2 level, 15h per year]
e Course “Radiative transfer” (topics covered include photometric quantities, transfer equation, ther-
modynamic equilibrium, lines and continuum, non-LTE effects, numerical methods).



STUDENT AND POST-DOC SUPERVISION

e Postdocs : Jérémy Neveu [ENS Paris, 2014-2015]
e PhD students : Manuel Berthet [ENS Paris, 2013-2017]

e M2 students : Rémi Paulin [2011, 2 months], Manuel Berthet [2012, 2 months], Bilal Ladjelate [2013,
2 months]

e M1 students : Brice Poillot [2011, 1 month]

e ENS Tutoring : Rémi Paulin [2010], Sandrine Codis [2010], Pierre Mourier [2013], Félix Driencourt-
Mangin [2013], Paul Caucal [2014], Jordan Philidet [2015]

e PhD jurys : Jean-Frangois Robitaille [Université Laval, Québec, Canada, 3 may 2014].

e Internship jurys : 46 internship jurys since 2012, from L3 to M2 level

COLLECTIVE RESPONSIBILITIES

m Deputy-director for the “Centre de préparation a I'agrégation de sciences physiques” [2008 - .. ]
e Recruitment of students, in collaboration with the Director (Jean-Marc Berroir, then Jean-Michel
Raimond) and representatives of Universities Paris VI and Paris XI.
e Establishment of yearly plannings (courses, exercise sessions, laboratory sessions, tests).
e Organisation of regular academic meetings.
e Maintenance of the Centre’s web site.

m ENS representative for the Master “Astronomie, Astrophysique et Ingénierie Spatiale” [2012 - .. ]
e Recruitment of students, in collaboration with the representatives of Observatoire de Paris and
Universities Paris VI, Paris VII, and Paris XI.
e Participation to academic meetings, yearly planning, and internship jury.
e Advice to students of ENS wishing to attend the Master’s courses.

m Member of the jury for admission to ENS [2012 - .. ]

e Correction of exam papers for the physics test specific to ENS Paris (6h, “PC” competition, ~150
papers to grade per year).

e Authorship of the subject for the 2014 session, concerning some aspects of the physics involved in
the Planck mission.

m Other responsibilities

e Member of the Planck-HFI Core Team since 2011, and Planck Scientist since 2014.

e Health and Safety representative for the ENS team of LERMA, since September 2009.

e Member of the committee overseeing the second phase of renovation works for the Physics Depart-
ment of ENS, since may 2015.

e LERMA contact for the “Computational grid” initiative (2010-2014).

e Elected member of LERMA laboratory council (“conseil de laboratoire”), since january 2014.

e Appointed member of CNU section 34 (“Astronomy, astrophysics”), since november 2015.

e Member of the Time Allocation Committee of IRAM, since February 2016.
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Chapitre 1

Introduction

1.1 A lightning-fast overview of the interstellar medium

Mass budget

As the name suggests, when one speaks of the interstellar medium (ISM), one means essentially
everything which lies in between the stars within a galaxy. Without any further specification, this refers
to the ISM of our own Galaxy, the Milky Way. The term “ISM” is a deceptively simple and mundane one
for what is in reality a very complex and fundamentally open physical system, whose role is essential in
the “Galactic ecosystem” and the cycle of matter and energy at the heart of the star formation process.
The importance of the ISM in the physical machinery that is our Galaxy is all the more fundamental
than it represents only a small fraction of its mass : about 7 x 10° M,, which is approximately 7% of the
stellar mass content, and less than 1% of the total mass of the Galaxy, which is dominated by the elusive
dark matter (Draine 2011).

Elemental composition

The ISM is made up of gas and dust particles, and in truth consists of an ensemble of species forming
a continuum, from atomic hydrogen H to simple and more complex molecules, to polycyclic aromatic
hydrocarbons (PAHs), to dust aggregates reaching sizes up to approximately 1 um (Kruegel 2003). One
could even extend this continuum to larger particles, which are the building blocks of planetesimals and
full-fledged planets. The gas and dust of the ISM are generally assumed to be well-mixed. Most of the gas
is hydrogen, in ionized (HII), neutral atomic (HI) and molecular (Hy) forms, which altogether amount to
approximately 71% of the total mass of the ISM. The second constituent of the ISM in mass is Helium
(28%). The remaining percent of the ISM mass is in heavier elements, mostly C, N, O, Ne, Fe, Si, S, Ar,
Ni, each amounting to a little more than 0.1% in mass (Draine 2011).

Interstellar chemistry

Despite their very low mass budget, these “heavy” elements play a fundamental role in the physics
of the ISM, as they combine to form a large number of molecular species and molecular ions. The
first detection of an interstellar molecule dates back to 1937, with the identification of the methylidyne
radical CH (Swings & Rosenfeld 1937), and the signatures of these species in absorption or emission
have led to a current tally of about two hundred, the largest one being the Crq fullerene (Cami et al.
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2010). This underlines the richness of ISM chemistry, even, surprisingly, in its most diffuse regions where
the ambiant radiation field should prevent the formation of molecules (see, e.g., Liszt et al. 2010, and
references therein), or where the gas temperature is not sufficient to activate highly endothermic chemical
pathways (Godard et al. 2014). The importance of that interstellar chemistry for understanding the origins
of life on Earth needs not be emphasized (Altwegg et al. 2015).

Interstellar dust grains

The second major impact these heavy elements have on ISM physics is that they are essential consti-
tutive elements of dust grains. These reprocess a significant fraction of visible and UV starlight to the far
infrared (FIR) ; they play a vital role in the heating of the gas via the photoelectric effect (see, e.g., Draine
1978; Wolfire et al. 1995) ; they participate in the chemical networks at play in the ISM by allowing gas
phase species to stick to their surfaces (via both chemical and physical adsorption processes) and react
with each other to form new molecules which could not be formed directly in the gas phase, given the
low temperatures of the ISM. The formation of molecular hydrogen, Hs, the most abundant molecule in
the Universe, is the foremost example of such a grain surface chemical process (see, e.g., Le Bourlot et al.
2012; Bron et al. 2014, and references therein). In cold clouds and prestellar cores, chemical species may
freeze-out in ice mantles on the surface of these grains (see, e.g., Jgrgensen et al. 2004).

The sizes of dust particles range roughly from 10 A to 1 um (Kruegel 2003), with a size distribution
that it usually modelled as a power-law ! (Mathis et al. 1977) such that most of the dust mass is supplied
by the biggest grains, and most of the surface area is provided by the smallest ones. Their composition is
still a matter of debate, but they can be broadly classified in two types, silicate and carbonaceous grains.
As pointed out by Kruegel (2003), these grains are formed in the circumstellar envelopes of AGB stars,
and their composition is closely related to the relative elemental abundances of carbon (C) and oxygen
(O) in these envelopes.

Cosmic rays

Cosmic rays are ions and electrons which are accelerated to relativistic speeds, sometimes with kinetic
energies up to a few 102° eV (Bird et al. 1994). It is believed that they are accelerated at shocks, through
a process called diffusive shock acceleration (Drury 1983; Caprioli & Spitkovsky 2014), occurring in
supernova remnants (Cristofari et al. 2013), but also in protostellar objects (Padovani et al. 2016).
They propagate diffusively throughout the Galaxy (see, e.g., Blasi & Amato 2012), interacting with
interstellar structures and thus participating in physical processes in the ISM. In particular, low-energy
(< 1GeV) cosmic rays provide the main source of ionization in dense gas, thus opening important
chemical pathways (Vaupré et al. 2014; Gerin et al. 2012). The importance of cosmic ray processes for ISM
physics extends to very small scales, as the proper treatment of the attenuation of their flux in collapsing
protostellar objects is necessary to decouple the gas and magnetic field in these objects, allowing to
form a centrifugally-supported disk and solving the so-called magnetic-braking catastrophe (Hennebelle
& Teyssier 2008; Padovani et al. 2015).

Phases of the ISM gas

As already mentioned, the energetic photons from stars impinging on dust grains strip them from
electrons, whose kinetic energy is then redistributed, via collisions, to the other electrons, and then to the
rest of the gas (ions and neutral species in turn). This results in gas heating (Bakes & Tielens 1994), with

1. Jura (1994) and Weingartner & Draine (2001) have provided further improvements upon the so-called MRN distribu-
tion of Mathis et al. (1977).
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timescales usually much shorter than the typical dynamical timescales in the ISM (Spitzer 1978). This is
not always the case, as mechanical heating may locally dominate other heating processes, for instance in
the wake of shock fronts, and in regions where intermittent turbulence dissipation occurs (Godard et al.
2014). Low-energy cosmic rays provide an additional source of heating via ionization (Goldsmith & Langer
1978; Glassgold et al. 2012), in a process similar to photoionization (Glassgold & Najita 2015). Finally,
molecular hydrogen Hy formed on the surface dust grains is released in the gas phase in a vibrationally
excited state, so that collisional de-excitations participate in the heating of the gas (see Le Bourlot et al.
2012, and references therein).

Balancing these heating mechanisms, the ISM may cool radiatively, through optically-thin continuum
emission of dust as we will discuss later, through thermal free-free emission, and via different lines depen-
ding on the physical state of the gas. These include molecular hydrogen lines (Le Bourlot et al. 1999) ; lines
from other molecular species ? such as CO, Ho0, or Oy (Neufeld et al. 1995) ; fine-structure atomic lines,
mostly [C11] at 158 um (Fixsen et al. 1999; Pineda et al. 2013), [O1] at 63 um and 145 ym (Bernard-Salas
et al. 2012), [N11] at 122 um and 205 pm (Goldsmith et al. 2015) ; resonance lines from iron and other me-
tals (Gaetz & Salpeter 1983; Lykins et al. 2013) ; and recombination lines such as Ly-a (Faucher-Gigueére
et al. 2010).

Heating and cooling mechanisms may be modelled via a net cooling function £ = nfA — nyl’, where
n# A and ngl' are respectively the cooling and heating rates, emphasizing their dependency on the gas
density ny (Wolfire et al. 1995). The computation of thermal equilibrium £ = 0 exhibits the possibility
for interstellar gas to exist under several different phases 3, among which we may note the following (see,
e.g., Draine 2011), from the most diffuse to the densest :

» Hot ionized gas (HIM) : ng ~ 4 x 1073 em ™3, T}, ~ 5 x 10°K

» Warm ionized gas (WIM) : nyg ~ 0.03cm™3, T}, ~ 10*K

» Warm neutral atomic Hi gas (WNM) : ng ~ 0.6 cm™3, Tj, ~ 8000 K
» Cold neutral atomic Hi gas (CNM) : nyg ~ 30cm ™3, T}, ~ 100K

» Dense molecular Hy gas : nyg > 103cm ™3, Ty, < 100K

Spatial distribution

The structures of the ISM cover a large range of scales, from Galactic spiral arms (a few 10% pc) to
Giant Molecular Clouds (GMC, typically 100 pc), down to scales comparable to those of stellar systems
(200 AU or 1 mpc). They lie essentially within thin disks of various scale heights, depending on the phase
considered, that are more or less coplanar with the orbits of stars around the Galaxy, although some hot
gas is definitely present in the spherical halo (Miller & Bregman 2015). Most of the cold HI gas is located
within 100-200 pc of the midplane, but another disk of warmer atomic gas extends to about 500 pc (Dickey
& Lockman 1990). The molecular gas and dust are distributed with smaller scale heights of about 80 pc
for the former? (Clemens et al. 1988; Dame et al. 2001) and 130 pc for the latter (Drimmel & Spergel
2001). One should bear in mind that these are very rough descriptions, since it is recognized that the H1
disk is flaring towards the outer Galaxy, that molecular gas is not equally distributed radially °, and that
both molecular gas and dust are more concentrated along the spiral arms than in the interarm regions.

2. CO is the second most abundant molecule in the ISM, after Ha, and much more readily observed because of its
permanent dipole moment.

3. Of course, the ISM being a dynamic medium, regions exhibiting kinetic temperatures T}, and gas densities ny different
from the ones listed below are observed (see references in Hennebelle & Falgarone 2012).

4. Note that a faint, thicker (250 pc scale height) disk of diffuse molecular gas is also suggested by observations (Henne-
belle & Falgarone 2012).

5. Roughly speaking, there is a large concentration in the nucleus, a hole near 2kpc and a molecular ring between 4 and
8kpc (Scoville & Solomon 1975).
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The cycle of interstellar matter

The ISM is a fundamentally open system, constantly exchanging matter and energy with stars and
the extragalactic medium 6. It stands at the crossroads of many chemical and physical processes ” over a
large range of spatial scales, from Galactic scales and beyond ® to stellar system scales. These processes
occur on possibly vastly different time scales, and play a central part in the cycle of matter from the ISM
to stars and back again, which we briefly describe here, starting with the diffuse WNM.

It is stirred by motions at all scales, due to many different processes : Galactic differential rotation
and galaxy-galaxy interactions (Bournaud et al. 2011), the crossing of spiral arms (Falceta-Gongalves
et al. 2015), supernove explosions (McKee & Ostriker 1977), and to a lesser extent outflows from young
stars (Li et al. 2015). These motions may lead to local compression of the gas, which heats up. If it is able
to cool down via radiative processes such as those mentioned earlier, then these local overdensities of now
CNM gas may become gravitationally bound (Hennebelle & Audit 2007). They will then form molecular
clouds (MC) when their density is sufficient to shield their interior from photodissociation (Valdivia
et al. 2016), and these MC will subsequently fragment in a hierarchical structure, down to the scale of
dense (ng ~ 10°cm™3) and cold (T ~ 10K) prestellar cores (see André et al. 2009, and references
therein). These prestellar objects may form young stellar objects (YSO) through gravitational collapse,
which requires the evacuation of a large fraction of the prestellar core’s angular momentum, leading to the
formation of jets and outflows, perpendicularly to the accretion disk around the YSO (Pudritz et al. 2007).
Once on the main sequence, stars continue to have an impact on their environment : through radiation,
which can ionize the neighbouring gas and clear dust grains via radiation pressure, but also through stellar
winds which inject material back into the circumstellar medium (Héfner 2012). Supernovae® disperse
heavy chemical elements and inject large amounts of kinetic energy far out into the ISM, participating
in the perpetuation of the matter-energy cycle of the ISM (Iffrig & Hennebelle 2015).

These macroscopic motions dissipate at small scales into gas heating, through various processes such
as viscous heating, Ohmic dissipation, and ion-neutral friction (see Momferratos et al. 2014, and references
therein). In between the injection and dissipation of energy is the realm of interstellar turbulence (Elme-
green & Scalo 2004; Hennebelle & Falgarone 2012).

1.2 Turbulence in the interstellar medium

A primer in turbulence

Turbulence is characterized by chaotic motions in a fluid which make it impossible to predict, in a
deterministic way, its local kinematic description on long timescales. Only statistical tools are appropriate
to tackle turbulence (Monin et al. 2007). Mathematically, turbulence arises from the non-linearity and
non-locality of the equation describing the time evolution of the velocity field v in a fluid. Even in
the simplest case of a non-magnetized, incompressible fluid, the Navier-Stokes equation presents this

6. Draine (2011) draws the following sketch of the mass exchanges : gas infall from the outskirts of the Galaxy brings in
~ 0.5Mg yr~!. Out of the interstellar gas, stars form at a rate (Star Formation Rate, SFR) ~ 1.3 Mg yr~'. In the course
of their lives, stars yield back ~ 0.5 Mg yr~! to the ISM in the form of outflows, stellar winds and SNe, and end up forming
~ 0.2Mg yr~! of stellar remnants (white dwarfs, neutron stars, black holes).

7. The fact that in the ISM, various energy densities (thermal, kinetic, magnetic, cosmic rays, electromagnetic in the far
infrared from dust emission, in the UV and visible from direct starlight) are all about 0.2 —2eV cm™3 is interpreted as the
result of this coupling of processes.

8. Galactic fountains driven by supernovae (McKee & Ostriker 1977) and cold accretion flows from filamentary structures
feeding gas in, for instance.

9. Both core-collapse supernovae (SNe) marking the end of the life of massive stars (Janka et al. 2012), and thermo-
nuclear SNe associated with a white dwarf’s mass tipping over the Chandrasekhar limit by accretion of material from a
companion (Mazzali et al. 2007).
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particularity 9. The non-linearity of the equation leads to instabilities when the velocity field experiences
random fluctuations, leading to the fragmentation of large eddies into ever smaller ones, until the eddies
are small enough that the viscous damping time is equal to the eddy turnover time. That picture led
to the Kolmogorov description of the turbulent cascade (Kolmogorov 1941, hereafer, K41), which is
based on the assumption that the energy transfer rate e from scale to scale is constant, so the solution
is statistically time-invariant. Key results from this K41 theory are that the velocity fluctuations dv;
at a scale [ are approximately given by dv; ~ (el)*/3, that the velocity power spectrum scales'! as
P, (k) o< €2/3k5/3 where k is the wavenumber, and that the structure functions of the velocity field '2
scale as S, (1) = ([v(r +1).u — v(r).u]’) « (el)?/? for any positive integrer p. The main flaw of the K41
theory, despite its successes, is that it cannot explain phenomena such as intermittency, which is the
fact that energy dissipation occurs in intense bursts highly localized in both time and space!* (Frisch
1995). In experimental studies, intermittency manifests itself through the presence of non-Gaussian wings
in the PDFs of velocity fluctuations dv; at small scales. She & Leveque (1994) proposed a correction to
the scaling exponents of the structure functions that matches quite well the observational data in fully
developed turbulence.

The inclusion of compressibility, which is necessary in the case of interstellar turbulence, leads to a
modification of the scaling exponents, related to the hierarchical structures in density that arise in the
flow. In particular, the velocity power spectrum steepens to k~2 while the density power spectrum is
flat (Falceta-Gongalves et al. 2014).

When the fluid is magnetized, which is the case in the ISM, the description becomes even more
complex (Biskamp 2003), as the coupling between fluctuations of the velocity field v and the magnetic
field B depends on whether these fluctuations occur along magnetic field lines or perpendicularly to
them, due to magnetic tension and pressure. The Iroshnikov-Kraichnan theory of incompressible MHD
turbulence (Iroshnikov 1964; Kraichnan 1965a,b) describes it through the weak interaction of mechanical
and magnetic wave packets, and leads to scalings dv; ~ (elva)'/* and P,(k) o (eva)'/?k=3/2, where
va = B/y/4mwp is the Alfvén speed. Note that a combination of the K41 and Iroshnikov-Kraichnan
cascades may be possible, as pointed out by Alexakis (2013). A major flaw of this theory is that the
eddies are isotropic, which has long been known to be false. The Sridhar-Goldreich theory (Sridhar
& Goldreich 1994; Goldreich & Sridhar 1995), describing MHD turbulence through strong coupling of

the wave modes, leads on the other hand to an anisotropic (I ~ vae Y 3li/ 3) K41-like cascade, with
P, (k) oc k72,

Scaling relations for compressible MHD have been studied by Kowal & Lazarian (2007), following the
work of Kritsuk et al. (2007). These authors found that the density-weighted velocity u = p'/3v has a
power spectrum following the Kolmogorov k~5/% scaling. The constancy of pol/l observed in the ISM

over a wide range of scales [ is in remarkable agreement with these theoretical findings (Hennebelle &
Falgarone 2012).

Interstellar turbulence

Interstellar turbulence was first suggested 65 years ago by von Weizsdcker (1951) and von Hoerner
(1951), and has since then been studied mostly through the statistical analysis of temporal and spatial

10. non-linearity comes from the advection term (v.V)wv, and non-locality from the pressure term —Vp/p.

11. That is integrated over directions. The full 3D power spectrum scales as E—11/3,

12. w =1/l is the unit vector linking the two points used in the argument.

13. The topology of high-dissipation regions (filaments or sheets) is still a matter of research (see references in Falceta-
Gongalves et al. 2014).
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variability of the observed signals 4. In particular, the self-similarity of structures expected from tur-
bulence is illustrated by the observations of power-law power spectra over a large range of scales for
a number of tracers, such as the local free electron density (Armstrong et al. 1995) or Hi1 density and
velocity fluctuations (Miville-Deschénes et al. 2003a). For instance, that latter analysis showed how the
velocity and density power spectra exhibit a K41 scaling over a large range of scales in a Galactic HI
cirrus cloud. Although the spectral indices found in other studies reveal a large scatter (Hennebelle &
Falgarone 2012), this may be due to projection effects (Miville-Deschénes et al. 2003b; Levrier 2004) and
to the large panel of tracers being used.

Line observations also provide the means to study the velocity distribution and exhibit properties
suggestive of turbulence, such as the Larson (1981) scaling between the sizes of molecular clouds and the
linewidths 1°, o, oc [* with o ~ 0.5, although the scatter about this relation is quite large (Hennebelle &
Falgarone 2012), and a flattening appears at small scales (Falceta-Gongalves et al. 2010).

Through line observations, hints of the intermittent dissipation of interstellar turbulence are also
accessible, at small scales. The non-Gaussian wings of centroid velocity increments in CO observations
by Hily-Blant et al. (2008) are linked to the plane-of-the-sky (POS) projection of the vorticity (Lis et al.
1996), and they are shown to arise from coherent, milliparsec-scale filamentary structures exhibiting large
velocity shears (Hily-Blant & Falgarone 2009). Similarly, the comparison of linewidths for neutral and
ionized species has brought Li & Houde (2008) to estimates of the ambipolar diffusion scale where the
magnetic field decouples from the neutral gas 19, and where ion turbulence is damped (Falceta-Gongalves
et al. 2010).

1.3 The interstellar magnetic field and polarization

1.3.1 The Galactic magnetic field

The Milky Way, like other spiral galaxies, is threaded by a magnetic field B which affects significantly
the dynamics of the interstellar medium (see the review by Beck 2016). First, it is directly coupled to
the ionized phases of the ISM gas, and indirectly to its neutral phases through ion-neutral friction. The
pressure Pg o< B? thus provided is a major player in the balance against gravitational collapse. Second,
the presence of a magnetic field in protostellar objects is essential to the loss of angular momentum
through jets, thus controlling the star formation process. Third, the ISM may be heated through magnetic
reconnection (Lazarian & Cho 2004). Finally, magnetic fields also control the propagation of cosmic
rays (Strong et al. 2007).

These galactic magnetic fields are thought to be generated in a three-stage process, as described
by Beck (2016) : (i) very weak seed fields may be present at very high redshift, either generated in the
primordial Universe, or by processes occurring at later times '7, (ii) amplification by turbulent small-scale
dynamo, which transfers mechanical energy into magnetic energy (see, e.g., Ferriere 1996), (iii) ordering
and sustaining by the o — Q effect, a coupling of differential rotation (£2) and the Coriolis force («) acting
on expanding gas shells driven by SNe explosions (Ferriere 1996; Beck et al. 1996).

The mean-field approximation to the a—$) dynamo equation, 9;Bg = V x (vx Bo)+V xaBy+nV? By,
where 7 is the magnetic diffusivity, has solutions that are described in terms of modes m with different

14. One should be cautious, however, when using projected observational results to constrain, e.g., statistical properties
of the velocity field, as discussed by, e.g., Lazarian & Pogosyan (2000); Miville-Deschénes et al. (2003b); Levrier (2004).

15. which are significantly supra-thermal

16. This method, based on the compared linewidths of HCN and HCO™, has been further employed in Li et al. (2010), He-
zareh et al. (2010) and Hezareh et al. (2014).

17. For instance, they may have been ejected by the first stars (Bisnovatyi-Kogan et al. 1973) or by the jets associated
with the first black holes (Rees 2005).
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azimuthal symmetry in the disk plane '8 and even/odd vertical symmetry (Beck 2016). Thus, the Galactic
magnetic field is the sum of this large-scale field B, which more or less follows the spiral structure of
the galaxy (see models by Jaffe et al. 2010; Jansson & Farrar 2012), and a small-scale turbulent field B,
which is the result of the small-scale dynamo.

The average strength of the magnetic field in the Solar neighbourhood is about 6 uG, and increases to
20-40 pG near the Galactic center, while larger values still are found in dense regions (Hennebelle & Fal-
garone 2012). There is an approximate equipartition !? between the large-scale and turbulent component
of the field, both having strengths of a few pG in the local ISM (see, e.g., Haverkorn et al. 2008, and
references therein).

The main methods to study the Galactic magnetic field and its fluctuations are :

(i) the polarization of background starlight by intervening dust clouds in the visible and near-infrared ;
(ii) the polarization of thermal dust emission ;

(iii) Zeeman splitting of radio spectral lines ;

(iv) Faraday rotation and total and polarized synchrotron emission.

The first two, which will be discussed in more detail in the next section, allow to estimate the strength
of magnetic fields in the ISM using the Davis-Chandrasekhar-Fermi technique (Davis 1951; Chandrasekhar
& Fermi 1953), which is based on the assumption that the variations in polarization angle are related to
velocity fluctuations 2°. Zeeman observations allow the measurement of relatively strong fields in dense
clouds : for instance, Crutcher et al. (2010) have compiled an ensemble of such measurements in HI,
OH, and CN lines, to show that the maximum strength of the magnetic field scales with density ny as
Biax x n§ above nyg > 300 cm ™3, with an exponent o = 0.65 £ 0.05. Finally, synchrotron emission is,
among other things, an excellent tracer of the large-scale magnetic fields in the ionized regions of the Milky
Way and other Galaxies (Beck 2016). It is usefully complemented by Faraday rotation measurements
towards extragalactic sources (Oppermann et al. 2012).

1.3.2 Polarization and interstellar dust

Dust grains, being subject to the UV and visible radiation from the ensemble of stars in the Ga-
laxy, absorb some of it to reach non-zero temperatures of around 15-20 K. At these temperatures, they
emit radiation in the infrared. The dust temperature Ty is the result of the balance between absorbed
and emitted power 2'. This thermal emission may be modelled as a modified blackbody, such that the

emissivity is written
p3tB

hv
exXp m —1

where the absorption coefficient is assumed to follow a power-law in frequency, &, o v?. The spectral
index (3 is about 2, and depends on the composition of the grains (Kruegel 2003). Of course, this is a
crude approximation, as the optical constants of dust grains show variations which are in general not
amenable to simple power-laws.

As electrons may be ejected from dust grains via the photoelectric effect, and grains may also collect
cosmic-ray electrons and protons (see Ivlev et al. 2015, and references therein), these grains acquire an

€=k, B, (Ty) x

18. The observed field reversals may indicate a distortion of the dynamo, or be the remnants from the chaotic seed
magnetic field.

19. The same is true in external galaxies, such as M51 (Houde et al. 2013).

20. Major improvements of the method have subsequently been proposed, e.g., Hildebrand et al. (2009) take into account
a non-uniform large-scale field, Houde et al. (2009) consider the effect of the telescope beam and line-of-sight (LOS)
integration, while Houde et al. (2011) and Houde et al. (2016) extend the analysis to interferometric data.

21. This description fails for small grains, for which a single photon absorption leads to a large increase of the temperature.
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FIGURE 1.1 — Example of dust spectral energy distribution (SED) from the DUSTEM model of Compiégne
et al. (2011). The thermal emission of grains dominates the spectrum in the long-wavelength range.

electrical charge. Since they are also spinning, a magnetic dipolar moment appears. Moreover, real dust
grains are not spherical, and although the characterization of their shapes is difficult (Jones 2011), it
is customary to model them as spheroids (oblate or prolate) of a certain porosity. The absorption and
emission cross-sections being related to the geometrical sections, the grains exhibit different emissivities
for radiations where the electric vector E is parallel or perpendicular to a grain’s long axis.

The interaction of the magnetic moment with the local magnetic field B leads to an alignment of the
non-spherical grains with B. Although the details of the process are still unclear, there is evidence that the
angular momentum of the grains aligns itself with the magnetic field through a process called Radiative
Torque Alignment (RAT), by which anisotropic radiation impacting grains with a net helicity causes a
difference in the scattering cross section to the left- and right-hand circular polarization components of
the radiation field, imparting a torque on the grain. The grain being magnetized, it precesses (Martin
1971) around the magnetic field lines, and the constant torque leads to alignment (see Hoang & Lazarian
2014, for a detailed description of the model and its applications).

The end configuration is that the rotating dust grains will preferentially have their long axes perpendi-
cular to field lines, as shown in Fig. 1.2. Since extinction cross-sections are proportional to the geometrical
size, the light from background stars 22 experiences a differential cross section when penetrating a cloud
of gas and dust where the particles of the latter are preferentially aligned. The light emerging from the
cloud is polarized, with the component perpendicular to B more extinct, so the visible and near-infrared
starlight presents a polarization ?? that is parallel to B (Fig. 1.2, top).

Kirchhoff’s law states that the thermal emissivity of these dust grains is proportional to the absorption
coeflicient, which in turn is proportional to the cross-section. Therefore, the dust grains emit light which is

22. which is essentially unpolarized and can therefore be decomposed into a sum of vibrations parallel to the local magnetic
field B and perpendicular to B

23. Historically, this is how Davis & Greenstein (1951) interpreted the serendipitous discovery of starlight polarization
by Hall (1949) and Hiltner (1949).
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preferentially polarized along the major axis of the grains, and so perpendicular to B (Fig. 1.2, bottom).
Of course, the orientation of the magnetic field varies along the LOS, alignment is not perfect and
depends on the composition and size of the grains, and the emission, which depends on the density of
the dust grains, needs to be integrated along the LOS... Therefore, one cannot easily derive properties of
the magnetic field, or of the dust for that matter, from observations of submillimetre polarized thermal
dust emission, but this tracer is still a very valuable one as we will see. In recent years, a number of
experiments have dramatically increased the amount of data pertaining to this emission from Galactic
dust (e.g. Matthews et al. 2009; Ward-Thompson et al. 2009; Dotson et al. 2010; Bierman et al. 2011;
Vaillancourt & Matthews 2012; Poidevin et al. 2013; Hull et al. 2014; Koch et al. 2014). Chief among
these is Planck , which provided the first full-sky map of this emission, leading to several breakthrough
results that we will present in the next chapter.

When observing any line of sight, the total intensity of the thermal dust emission (Stokes I) and the
linearly polarized emission (encoded in the Stokes parameters @) and U) are given by

2
I = /Sl, e ™ {1 —po (cos2~y - gﬂ dry; (1.1)

Q= /po S, e cos (2¢) cos? ydr,; (1.2)

U= /po S, e~ sin (2¢) cos® y dr,. (1.3)

where S, = B, (Tq) is the source function of a blackbody at the dust temperature Ty, po is a polarization
fraction parameter related to the intrinsic polarization fraction (see Planck Collaboration Int. XX 2015),
v is the angle that the local magnetic field makes with the plane of the sky, and ¢ is the local polarization
angle in the HEALPIX convention (Gorski et al. 2005). This angle differs by 90° from the angle x of the
plane of the sky (POS) projection of the magnetic field, as defined in Fig. 1.3, and should not be confused
with the actual polarization angle ¢. These angles are equal (¢ = 1) only for a uniform magnetic field
along the line of sight. We define the magnetic orientation angle as Y = 1 4+ /2, which gives the inferred
orientation of the POS projection of the magnetic field integrated along the line of sight. Of course, ¥ = x
if the magnetic field is uniform on the LOS.

Stokes @ and U encode the linear polarization of the radiation on each line of sight, as shown in Fig. 1.4
(left). For instance, a signal whose polarization direction is North-South has positive Stokes @ and null
Stokes U. These quantities do not transform as scalars under a rotation of the coordinate frame by an
angle 6, as we have rather (Q,U) — (Q cos 20+ U sin 26, —Q sin 20+ U cos 260). Cosmologists have therefore
taken the habit of describing polarization in terms not of @ and U, but instead in terms of quantities that
do transform as scalars under a rotation, called E and B (Zaldarriaga 2001). This F-B decomposition
is a linear transformation of the Q-U field on the sky which is non-local but invertible. E is invariant
under a mirror symmetry (parity), while B changes sign (see Fig. 1.4, right). This decomposition is of
particular interest for CMB studies because density fluctuations associated with the CMB anisotropies in
total intensity cannot produce B-mode polarization. This type of pattern arises only from lensing (Lewis
& Challinor 2006) or as a signature of primordial gravitational waves in the early Universe (Seljak &
Zaldarriaga 1997).
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FIGURE 1.2 — Polarization of background starlight by dust grains (top) and polarized thermal dust
emission by the same grains (bottom).
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FIGURE 1.3 — Definition of angles. Figure adapted from Planck Collaboration Int. XX (2015)
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FIGURE 1.4 — Left : Stokes (Q and U parameters encode the linear polarization of the radiation on each
line of sight. The red segment shows the direction of polarization that corresponds to the various @ and
U configurations. Right : The E- and B-modes encode the morphological structure of the polarization,

in a non-local way. Features that are fully mirror-symmetric lead to pure E-modes, while features that
are fully mirror-antisymmetric lead to pure B-modes.
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FIGURE 1.5 — Left : CMB map produced by Planck. Right : Temperature (T'T) power spectrum with the
best-fit ACDM model overlaid (the lower plot shows residuals). Figures taken from Planck Collaboration
I (2016).

1.4 The Planck mission and observations

Planck?* (Planck Collaboration I 2016) was the third-generation space mission aimed at mapping
the anisotropies of the cosmic microwave background (CMB), after COBE (Smoot et al. 1992) and
WMAP (Bennett et al. 2013). Launched on May 14", 2009 together with the Herschel Space Observatory,
and fitted with two instruments, the High-Frequency Instrument HFI (Planck HFI Core Team 2011)
and the Low-Frequency Instrument LFT (Mennella et al. 2011), it surveyed the microwave sky in nine
frequency bands 2°, from August 12", 2009 to October 234, 2013. The scanning strategy of the satellite
was such that the entire sky was covered twice each year. The Planck mission achieved never before
seen performances, through the combination of exquisite sensitivity, complete spatial coverage, extensive
frequency coverage, and excellent angular resolution (from 33’ to 5').

As already mentioned, the main goal of the Planck mission was to map the anisotropies of the CMB
in total intensity, which are thought to be the seeds of the large-scale structures that can be observed in
the local Universe, without any other limitations but those set by astrophysical signals, and derive from
these measurements fundamental constraints on cosmological models of the Universe. The results of this
work, presented in Planck Collaboration XIII (2016), show an excellent agreement with the 6-parameter
ACDM model (Peter & Uzan 2009), with no significant hint of the necessity for an extension of the
model (see Fig. 1.5). The mission also provided extremely valuable information regarding extragalactic
sources, in particular clusters of galaxies via the Sunyaev-Zeldovich effect (Planck Collaboration XXII
2016; Planck Collaboration XXIII 2016; Planck Collaboration XXIV 2016), and on microwave emission
from our own Galaxy’s gas and dust contents (Planck Collaboration X 2016; Planck Collaboration XXV
2016; Planck Collaboration XXVIIT 2016).

The measurement of CMB anisotropies in polarization was not a primary goal of the mission, but
from the initial proposal in 1995 to the final design, technological advances have made it possible for
the polarized microwave signal to be measured at unprecedented sensitivity with Planck. This is of great
importance, since the polarized CMB is a valuable source of cosmological information regarding, e.g., the

24. Planck ( http://www.esa.int/Planck ) is a project of the European Space Agency (ESA) with instruments provided
by two scientific consortia funded by ESA member states and led by Principal Investigators from France and Italy, telescope
reflectors provided through a collaboration between ESA and a scientific consortium led and funded by Denmark, and
additional contributions from NASA (USA).

25. Centered on 30, 44, 70, 100, 143, 217, 353, 545, and 857 GHz.
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FI1GURE 1.6 — Fluctuation levels of various foreground emission components, compared to the CMB, at
high Galactic latitude in total intensity (left) and polarization (right). The Planck frequency bands are
also indicated. Figure taken from Planck Collaboration I (2016).

generation of primordial magnetic fields (Planck Collaboration XIX 2016), the reionization history of the
Universe (Planck Collaboration XLVIIT 2016), gravitational lensing due to large-scale structures (Planck
Collaboration XV 2016), inflationary models of the early Universe (Planck Collaboration XX 2016), pos-
sible non-Gaussian primordial fluctuations (Planck Collaboration XVII 2016), and tests of fundamental
physics (Planck Collaboration XLIX 2016).

The three channels of LFT (30, 44, and 70 GHz) and the four lowest frequency channels of HFI
(100, 143, 217, and 353 GHz) were fitted with detectors able to measure the linear polarization of the
observed radiation 26. Fig. 1.6, taken from Planck Collaboration I (2016), shows the spectra of various
contributions to the microwave sky in the different Planck bands, both in total intensity (left) and in
linearly polarized intensity (right). This figure shows that, at 353 GHz, which is therefore the highest-
frequency polarization-sensitive channel of Planck, the main polarized signal is dust thermal emission,
about two orders of magnitude above the polarized CMB. This means that, to correctly assess the
primordial signal, it is necessary to properly remove this foreground. The following chapter details some
of the results that Planck has provided in the understanding of polarized thermal dust emission and the
Galactic magnetic field.

26. The Planck detectors were radiometers for LFI, and bolometers for HFI. The latter are of two different kinds :
spiderwebs (SWB) and polarization sensitive bolometers (PSB) (Jones et al. 2003; Rosset et al. 2010), which as the name
suggests are the only ones able to measure the linear polarization of the incoming radiation. Each PSB is a pair of closely
positioned square grids, each of which being metallized in only one direction. The component of the incoming radiation
whose electric field is aligned with that metallized direction gets reflected (Houde et al. 2001), and the grid is transparent
for the perpendicular component. The two grids of the PSB are placed at 90° from one another, allowing to measure the
total intensity I = |Ey|? +|Ey|?, but also the Stokes Q = |E|? —|Ey|? associated with its local frame (z,y). Using a second
PSB rotated by 45° provides Stokes U.
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Some Planck results on the Galactic
magnetic field

2.1 Polarization measurement analysis

2.1.1 From Stokes parameters to polarization fraction and angle

One of the objectives of the Planck mission is to put constraints on the polarization of the primordial,
cosmological signal. In order to do this, it is necessary to properly understand, if not fully remove, the
polarization of foreground signals, in particular that of thermal dust emission. However, the physical
quantities used to describe the polarization properties of this signal are not the Stokes parameters. The
astrophysical processes linked to dust and the magnetic field are much more readily tackled using the
polarization fraction p and angle ¢, which are defined by !

p= 7”622;—(]2 and P = %atan(U, Q) (2.1)

An essential part of the work involved in the analysis of Planck polarization data is therefore to relate
the measurement of the (I, @, U) Stokes parameters to these quantities, which are much more meaningful
for astrophysical processes. However, the non-linearity of the transformation (I,Q,U) — (I, p, %) means
that, in the presence of noise, the quantities computed via Eq. (2.1) from the measured Stokes parameters
are biased estimators of the true polarization fraction and angle, as first discussed by Serkowski (1958).

We therefore need reliable, less biased estimators of p and v to understand the physical processes linked
to dust and the magnetic field. Moreover, the noise properties of the Planck measurements exhibit large-
scale variations over the whole sky, in terms of the signal-to-noise ratio (SNR) and the noise covariance
matrix 2. To obtain a uniform survey of the polarization fraction and angle — something that is essential
to perform a large-scale modelling of our Galaxy - the impact of the full complexity of the noise has to
be taken into account.

1. Note that v is here defined in the HEALP1x convention (Goérski et al. 2005), which means that angles are counted
positively clockwise from the north-south direction. The IAU convention is that polarization angles are counted positively
anti-clockwise. The change from one convention to the other is done by the transformation U — —U. Note also that we use
the two-argument version of the atan function, in order to avoid the m-ambiguity.

2. The noise covariance matrix is composed of the various covariances oxy, where X and Y are any of the Stokes
parameters. In our study, that matrix is parametrized by the ellipticity ¢ and correlation p of the (Q,U) Gaussian noise
distribution. See figure 1 of Montier et al. (2015a) for a graphical definition of these parameters.
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2.1.2 Characterization of the statistical bias on p and v

Within the Planck collaboration, we formed a small group dedicated to characterize the bias in p and
1 in the presence of correlated noise in (I, @, U), going beyond the strong simplifying assumptions usually
made in polarization analysis (Montier et al. 2015a). We derived analytical expressions for the probability
density functions (PDF) of p and ¢ and we explored, via Monte-Carlo simulations, the impact of the
noise properties on the statistical variance and bias of these quantities. We have thus shown that when
ellipticities® do not deviate from the canonical, uncorrelated value of 1 by more than 10%, the bias on p
can reach up to 5% of the statistical uncertainty o,. In that same regime, the bias on the polarization angle
is limited to less than 1°, well below the statistical uncertainty o,. We have shown that the uncertainty
on the total intensity I has to be properly taken into account when analysing polarization data for faint
objects, due to I entering the definition of p in the denominator. We have also compared estimates of the
uncertainties affecting polarization measurements, addressing limitations of estimates of the SNR, and
shown how to build conservative confidence intervals for p and v simultaneously.

2.1.3 Comparison of estimators

To go beyond this descriptive analysis, we have compared several estimators of p and ¢ (Montier
et al. 2015b) including a new frequentist one for p, the modified asymptotic estimator (MAS) introduced
in Plaszczynski et al. (2014), and one inspired by a Bayesian analysis. This has allowed us to propose
recipes adapted to different use-cases. For instance, we have provided the best estimators to build a
mask, to compute large maps of the polarization fraction and angle, and to deal with low SNR data.
More generally, we have shown that the traditional estimators suffer from discontinuous* PDFs at low
SNR, while the asymptotic and Bayesian methods do not. These two have been shown to present different
properties in terms of the shapes of their PDFs, the MAS estimator yielding one that is close to Gaussian,
while the Bayesian PDF is strongly asymmetric with a sharp cut at low SNR.

We have also described the statistical bias on a derived quantity, the polarization angle dispersion
function, in Alina et al. (2016), which is currently under review.

2.1.4 The PMA library

The tools and methods devised in the course of this work and for this set of papers, commonly referred
to as Polarization Measurement Analysis (PMA), were extensively used on the Planck data to obtain
the results which we will discuss next. These tools are currently being organized as an IDL library and a
python package, by myself and L. Montier, for a public release. The goal is to spread and facilitate their
use in a wider community, as more and more high-precision polarization experiments are being set up,
from the ground, on balloons, and in future space missions.

2.2 Planck observations of polarized thermal dust emission

As already mentioned (see Fig. 1.6), polarized thermal dust emission is best studied in the highest-
frequency Planck channel with polarization capabilities, i.e., at 353 GHz®. Our first analysis of the Planck

3. Actually, effective ellipticities (see Montier et al. 2015a).

4. This means that when the naive computation of p using Eq. (2.1) yields a results below some cutoff, these estimators
yield a value of zero for the polarization fraction.

5. The full-mission maps of Stokes parameters (I,Q,U) at that frequency, and the associated covariance matrices,
are available from the Planck Legacy Archive (http://www.cosmos.esa.int/web/planck/pla) and are part of the 2015
public release of Planck data (Planck Collaboration I 2016). The maps are at a native 4.8" resolution in the HEALP1x
format (Gorski et al. 2005) with Ngqe = 2048.
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FI1GURE 2.1 — All-sky view of the magnetic field and total intensity of dust emission measured by Planck
at 353 GHz. The colours represent Stokes I, and the “drapery” pattern, produced using the line integral
convolution (Cabral & Leedom 1993), indicates the magnetic orientation. Figure taken from Planck
Collaboration I (2016)

data focusing on thermal dust polarization therefore made extensive use of that channel (Planck Collabo-
ration Int. XIX 2015; Planck Collaboration Int. XX 2015). Subsequent analyses by our group also made
use of lower-frequency channels (e.g., Planck Collaboration Int. XXII 2015; Planck Collaboration Int. L
2016). The following sections present the results of these studies.

2.2.1 The large-scale polarized sky

The large-scale polarized sky as seen by Planck-HFI at 353 GHz is presented in Planck Collaboration
Int. XIX (2015), including maps of p and ¢ and their associated uncertainties. From these, the maximum
dust polarization fraction is observed to be quite high (pmax > 18%), in particular in some of the interme-
diate dust column density regions ©, confirming results previously obtained by the Archeops balloon-borne
experiment (Benoit et al. 2004; Ponthieu et al. 2005). The polarization fraction is found to decrease with
increasing column density, which is interpreted in terms of magnetic field tangling on the line-of-sight,
and of loss of grain alignment with the field in dense regions. The spatial structure of the polarization
angle is analyzed in terms of the polarization angle dispersion function, defined as

Sl = | = S [ () — v (r + L)) (22)

6. Visual extinction Ay < 1.
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FIGURE 2.2 — Comparison between the distributions of the polarization fractions p and column densities
in the simulated observations (colour scale, with upper and lower envelopes in solid red lines) and those of
the observations (solid black lines). Dashed lines are linear fits of the form pya = mlog (NH / cm’z) +c
on the distributions’ upper envelopes. See Planck Collaboration Int. XX (2015) for details.

where the sum extends over the pixels which lie within an annulus of mean radius [ centered on 7.
This quantity is found to anticorrelate with the polarization fraction, which we interpret as the result
of magnetic field tangling on the LOS”. The morphological analysis of the S map shows high-valued
filamentary structures which separate regions on the sky where the polarization direction is fairly uniform,
but changes abruptly at the filament location. This happens without apparent variations in dust column
density.

We also compared the polarized dust emission to the polarized synchrotron emission observed in
particular with Planck-LFI and WMAP. We found a globally similar structure in the Galactic Plane and
a few other regions, but a more thorough analysis shows that dust and cosmic rays (associated to the
synchrotron emission) sample different media. Much of the structure observed in the 353 GHz polarization
map may be attributed to the topology of the magnetic field.

In Planck Collaboration I (2016), we presented a full-sky map showing the magnetic orientation
(rotated by 90° with respect to the polarization orientation) as a "drapery" pattern built using the line
integral convolution of Cabral & Leedom (1993). This map (Fig. 2.1) shows the large-scale orientation
of the field along the Galactic Plane, as well as striking features such as the North Polar Spur, but the
orientation pattern is irregular and difficult to interpret in regions where the field varies significantly
along the line of sight.

2.2.2 Local statistics and comparison with MHD simulations

Planck Collaboration Int. XX (2015) presents the statistics of p and ¥ towards a set of nearby fields,
sampling both the diffuse ISM and molecular clouds, and therefore representative of the range of column
densities Ny from about 102° to a few 10?2 cm™2. These observations are compared to polarized emission

7. Similar anti-correlations were found by the BLASTPol experiment (Fissel et al. 2015) at the scale of a single Galactic
molecular cloud (Vela C).
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FIGURE 2.3 — Two-dimensional distribution function of log (p) and log (S) in simulated observations. The
solid black curve represents the evolution of the mean log (S) per bin of log(p). A linear fit log (S) =
m’log (p) + ¢’ is performed, restricted to bins in log(p) that contain at least 1% of the total number of
points. This fit is shown as the dashed black line. The dashed grey line is a large-scale fit to observational
data. See Planck Collaboration Int. XX (2015) for details.

maps computed from simulations of anisotropic magnetohydrodynamical (MHD) turbulence, similarly
to, e.g. Pelkonen et al. (2007) and Falceta-Gongalves & Lazarian (2011). In these simulations, however,
we assumed a uniform intrinsic polarization fraction of the dust grains. It is shown that the largest
polarization fractions are reached in the most diffuse fields and that the maximum polarization fraction
Pmax decreases with increasing Np. That decrease above Ny ~ 102! cm™2 is very well reproduced in
the simulations, as can be seen in Fig. 2.2, emphasizing the essential role played by the tangling of the
magnetic field on the LOS. This underlines the importance of the turbulent structure of the magnetic
field on the LOS to account for depolarization, leading to the polarization fraction along a given line of
sight being anti-correlated with the local angular dispersion function S, as shown in Fig. 2.3. However,
the dispersion of the polarization angle for a given polarization fraction is found to be larger in the
simulations than in the observations, suggesting a shortcoming in the physical content of these numerical
models. Finally, the dust intrinsic polarization fraction may be recovered if the magnetic field is uniform
and perpendicular to the LOS, showing that the large-scale magnetic field orientation with respect to the
line of sight plays a major role in the quantitative analysis of polarization data, as already pointed out
by Falceta-Gongalves et al. (2008).

2.2.3 Relative orientation between the magnetic field and dust structures
In nearby molecular clouds

To gain insight on the dynamical role of the magnetic field in the formation of structures within
molecular clouds, we performed a statistical assessment of the relative orientation between the magnetic
direction in the POS and the structures of matter, in ten nearby (d < 450 pc) Gould Belt molecular
clouds (Planck Collaboration Int. XXXV 2016). The magnetic orientation is inferred from the 353 GHz
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FIGURE 2.4 — Left : Column density map of the Taurus Molecular Cloud (TMC), with segments showing
the magnetic orientation. Right : Histograms of Relative Orientation (HRO) for this field in different Ny
bins. An HRO peaking near 0° point to the magnetic field’s projection in the POS being mostly aligned
with the dust structures. Figure taken from Planck Collaboration Int. XXXV (2016).

polarized thermal dust emission, and the orientations of dust structures are characterized via the gradient
of column density V Ny. This analysis is performed on a pixel-by-pixel basis, in bins of Ny, using the
Histogram of Relative Orientations (Soler et al. 2013). We find that for most clouds the relative orien-
tation changes as column density increases (Fig. 2.4) : in diffuse regions, structures of matter are either
preferentially aligned with the magnetic orientation or show no preferred orientation, while the preferred
orientation is perpendicular in dense regions. This is found to be consistent with simulated observations
obtained from MHD simulations of trans- or sub-Alfvénic turbulence®, underlining the dynamical role
played by the magnetic field in the formation of structures in molecular clouds at the scales probed by
Planck (a few parsecs at the distances of the Gould Belt clouds). Using velocity dispersion measurements
from CO data by Dame et al. (2001), and applying the Davis-Chadrasekhar-Fermi method (Davis 1951;
Chandrasekhar & Fermi 1953) improved upon by Hildebrand et al. (2009), we found the magnetic field
in those clouds to be in the range 10-50 uG, although these estimates should be taken with a grain of
salt, considering the strong assumptions made when applying this method.

Extension to larger regions

This study of the relative orientation between structures of matter and magnetic field directions
inferred from polarization is extended, in Planck Collaboration Int. XXXII (2016), to most of the sky
at intermediate and high Galactic latitudes, covering a wide range of column densities, from 10%° to
1022 cm~2. We found that filamentary structures (ridges) in the intensity map have counterparts in the
Stokes @ or U maps. The orientation of the ridges in the I map is estimated using an algorithm based on
the analysis of the Hessian matrix : it is found to be preferentially aligned with the magnetic field, all the
more so than the lines of sight considered are more diffuse (increasing p and decreasing Ny), in agreement

8. ov < B/+\/Awp where oy is the velocity dispersion, B the amplitude of the magnetic field, and p the density.
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FIGURE 2.5 — Left : Uniform magnetic field model of Planck Collaboration Int. XLIV (2016) towards
the South Galactic Pole. The dotted lines correspond to constant Galactic latitudes b or longitudes [.
At three (red) points we show the magnetic orientation angle Yy, exhibiting its variation (and therefore
those of @ and U apparent in Fig. 2.6). Right : Gaussian model used in Planck Collaboration Int.
XXXII (2016) and Planck Collaboration Int. XLIV (2016). The Sun is at the center, and each circle
represents one of N polarization layer (N = 1 in Planck Collaboration Int. XXXII (2016), N = 7
in Planck Collaboration Int. XLIV (2016)). The large-scale field By is the same in each layer, while By is
a different, independent Gaussian realization of the turbulent component, as described in the text. Note
that in Planck Collaboration Int. XXXII (2016), the uniform field By is taken to be tangential to the
polarization layer.

with the study of Planck Collaboration Int. XXXV (2016). The correlation between an increased p and a
statistically preferred alignment of the magnetic field with structures of matter is interpreted in light of
projection effects, using an analytical toy model. It consists in assuming that the magnetic field is the sum
of a mean component B aligned with the ridges, and a 3D turbulent component B;, whose components
are taken to be independent, zero-mean Gaussian random variables with a power-law angular power
spectrum ? Cy o< £*M (see Fig. 2.5, right). Besides this spectral index, the model introduces a parameter
fu which is the ratio between the standard deviation of By and the modulus of By. This parameter is
estimated to be fyr = 0.8 & 0.2 from the comparison of polarization angles on and off identified ridges.

Specific analysis of the southern Galactic cap

We analyzed the polarized emission observed by Planck at 353 GHz towards high Galactic latitudes,
specifically the southern Galactic cap (b < —60°), in Planck Collaboration Int. XLIV (2016). The large-
scale pattern of this emission (Stokes @ and U maps) shows a particular "butterfly" shape (Fig. 2.6),
which we interpret in the framework of an extension to the model of Planck Collaboration Int. XXXII
(2016). The mean Galactic field in the Solar neighbourhood, associated with this pattern, is found to
be oriented towards Galactic coordinates (lo,bg) = (70 & 5°,24 & 5°). We study the distributions of p
and ¢ towards this region, and find that polarization fractions exhibit a mean (p) = 12 + 1% with a
wide distribution (~ 25%), while polarization angles are distributed with a standard deviation of about
12° around the pattern expected from a completely uniform field By (see Fig. 2.5, left). To explain

9. This is for £ > £g. For £ < {g, the power spectrum is assumed to be constant.
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FIGURE 2.6 — Stokes @ (left) and U (right) at 353 GHz towards the southern Galactic cap, showing the
"butterfly" pattern below b < —60°. Figure adapted from Planck Collaboration Int. XLIV (2016).

these distributions, a phenomenological model is built extending the model of Planck Collaboration Int.
XXXII (2016) : the integration along the LOS is replaced by a sum over N independent layers, which
may be related to the correlation length of the Galactic magnetic field. Within each layer, the turbulent
component By is obtained from Gaussian realizations as in Planck Collaboration Int. XXXII (2016).
With pg = 26%, fuir = 0.9 and N = 7, we are able to reproduce the distributions of p and 1), as shown 1°
in Fig. 2.7.

2.2.4 The angular power spectrum of polarized dust emission

In Planck Collaboration Int. XXX (2016), we measured the spatial (angular) power spectrum of the
polarized thermal dust emission ! over the multipole range 40 < ¢ < 600, outside of the Galactic plane.
We first showed that the statistical spatial properties of dust emission may be characterized over these
regions by simple angular power spectra Cy, despite the non-Gaussianity and anisotropy of dust emission.
We found that the auto power spectra of £ and B modes are well adjusted by power laws C’fE x (YEE
and CPP o (55 with spectral indices app pp = —2.42 & 0.02. The amplitudes of the power spectra
vary with the average brightness, similar to what is observed for the intensity power spectra. The analysis
across frequencies from 353 GHz down to 100 GHz shows that the power spectra are consistent with a
modified blackbody with gp = 1.59 and Ty = 19.6 K, in agreement with Planck Collaboration Int.

10. Note that p? is used because an unbiased estimator of it can be built from independent subsets of the data.
11. Auto power spectra CfE and CEB for £ and B modes, respectively.
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FIGURE 2.7 — Distribution of p? (left) and g (right) towards the Southern Galactic cap, derived from
Stokes parameters at 353 GHz. The polarization angle 1i is computed relative to the direction expected
from a completely uniform magnetic field. Data points are shown in black with error bars, while the solid
lines represent the mean distributions over 20 realizations of the Gaussian models discussed in the text,
with the shaded areas corresponding to 1o and 20 dispersions. The dashed vertical line in the left panel
corresponds to pg = 26%. Figure adapted from Planck Collaboration Int. XLIV (2016).

XXII (2015). Comparing the two auto power spectra, it is found that there is a systematic difference in
amplitude, with CéEE / CéBB ~ 2. These properties are preserved at high Galacitc latitudes, towards lines
of sight with very faint dust emission, and there is therefore no region on the sky where the primordial
B-modes could be measured without properly subtracting the foreground polarization. In particular, the
level of contamination by dust polarized emission in the BICPE2 field (BICEP2 Collaboration 2014) is
estimated to be ~ 1.32103% +0.29 x 1072 uK? over the multipole range of the primordial recombination
bump (40 < ¢ < 120), which is comparable to the signal level reported by BICEP2 Collaboration (2014).

The origin of the E/B power asymmetry is traced to the filamentary structures of the ISM in Planck
Collaboration Int. XXXVIII (2016). This is done by filtering the 353 GHz Stokes maps at high Galactic
latitude to identify filaments'? in the range of scales where this power asymmetry is observed. We
extracted 259 filaments with lengths larger than 2°, and found that their orientation was preferentially
aligned with the magnetic orientation inferred from 1. After rotating the Stokes I, @, U, as well as the
E and B maps of individual filaments, we stacked them together (see Fig. 2.8). From these, and the
histogram of relative orientations (Soler et al. 2013; Planck Collaboration Int. XXXV 2016), we derived
a mean polarization fraction in the filaments of (p) = 11%, in agreement with the results of Planck
Collaboration Int. XLIV (2016), and showed that the correlation between the filamentary structures and
the magnetic orientation is able to account for the E/B power asymmetry and the C7¥/CFE ratio
reported in Planck Collaboration Int. XXX (2016).

2.2.5 Frequency dependence of dust polarized emission
Global analysis at intermediate Galactic latitudes

In Planck Collaboration Int. XXII (2015), we performed a cross-correlation analysis between the
353 GHz I, Q and U maps, taken as dust emission templates, and data from both Planck and WMAP, to

12. This is done with SMAFF (Bond et al. 2010)
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FIGURE 2.8 — Stacked maps of the total intensity (left, represented by the Dss3 dust model of Planck
Collaboration XI (2014)), Stokes @ (center), and Stokes U (right) in the extracted filaments at high
Galactic latitudes by Planck Collaboration Int. XXXVIIT (2016). The maps are rotated to align the
filaments along a common North-South direction.

characterize the frequency dependence of dust emission. This analysis is performed over circular patches
of 10° radius, at intermediate Galactic latitudes. We have thus determined the spectral indices of dust
emission between 100 and 353 GHz in total intensity (5;) and polarization (Sp) in each patch. These are
found to be remarkably uniform over the mask used, with significantly different values : ; = 1.51 +0.01
and Bp = 1.59 £ 0.02. We derive the mean spectral energy distribution (SED) of the dust microwave
emission '3, and find that it increases below 60 GHz in both total intensity and polarized emission. In the
latter case, this may be due to a synchrotron component spatially correlated with dust. The polarization
fraction p of dust emission is found to decrease by 21 4 6% from 353 to 70 GHz.

Spatial variations of the polarized thermal dust SED

In Planck Collaboration Int. L (2016), the spatial variability of the dust polarized spectral energy
distribution (SED) is studied, traced by the correlation ratio of the Cf B angular power spectra between
217 and 353 GHz. For entirely correlated signals in these two channels, this ratio should be one, and it was
found to be smaller. The departure from unity is too large to be ascribed to CMB residuals, instrumental
noise or systematics, when combining the results over different high Galactic latitude regions covering 20%
to 80% of the sky : the confidence that this is a real decorrelation between dust emission maps at 217 and
353 GHz is over 99%. Also, when comparing the decorrelation in regions with different column densities
Ny, it is found to be larger in more diffuse areas of the sky. It is also larger at smaller angular scales. This
decorrelation may be ascribed to spatial variations of the dust SED or of the polarization angle, or to a
combination of the two. These results are of particular importance for cosmology, in the sense that they
pose a fundamental limit to the possibility to extrapolate dust templates at high frequencies down to
CMB frequencies (~ 160 GHz) in order to remove this foreground polarized emission. More specifically,
ignoring this decorrelation leads to a significant positive bias on the estimation of the tensor-to-scalar
ratio r (BICEP2/Keck Array and Planck Collaborations 2015).

13. microwave emission that is correlated with the 353 GHz dust templates.

#Kems
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2.2.6 Comparison with starlight polarization in extinction
Implications for dust models

The dust grains that emit the radiation seen by Planck in the submillimetre also extinguish and
polarize starlight in the visible and near-infrared (NIR). In Planck Collaboration Int. XXI (2015), we
used this property to establish new constraints on the models (see, e.g., Draine & Fraisse 2009) used to
describe the properties of these grains (composition, size distribution, shape, ...). Using catalogues of
starlight polarization (Heiles 2000), we selected stars for which the reddening E(B — V) yields a column
density Ny that is comparable to the measure derived from Planck’s dust model (Planck Collaboration
XI 2014) in the same direction, and the polarization angle in the visible is close to that from Planck
rotated by 90°. The matter probed by the two methods is thus the same for these lines of sight. Having
access to the polarization degree py and the optical depth 7y in the visible V' band, and to the 353 GHz
polarized intensity Ps and total intensity Is from Planck, we study the ratios Rg/v = (Ps/Is)/(pv/Tv)
and Rpj, = Ps/py. Averaged over the 206 lines of sight selected, we find Rg,y = 4.240.2(stat)40.3(syst)
and Rp/, = 5.4+ 0.2(stat) + 0.3(syst) MJy sr~*. The value found for Rg/y is compatible with most dust
models in the diffuse ISM, so it does not provide strong constraints for these models. On the contrary,
Rp/, is directly linked to the properties of the polarizing grains and is found not to be compatible with
model predictions, which are too low by a factor of about 2.5. This means that changes in the optical
properties of aligned grains are required, and we are currently improving the DUSTEM model of Compiégne
et al. (2011) to take into account these new constraints (Guillet et al. 2016).

Implications for magnetic field morphology in nearby molecular clouds

In Soler et al. (2016), the magnetic orientation inferred from Planck data at 353 GHz is compared, in
four nearby (d < 160 pc) molecular clouds, to that derived from starlight polarization in extinction in the
near infrared and visible. The average dispersion of the orientation inferred from starlight polarization
within regions of 10’ diameter '* is less than 20°, and the mean field orientation within these regions
lies on average within 5° from that inferred from the 353 GHz data. Since starlight polarization data
probes much smaller scales than Planck data, we use the Gaussian model of the Galactic magnetic field
introduced in Planck Collaboration Int. XXXII (2016) to establish the robustness of our analysis. We
also compare the two sets of data using the second-order structure functions of the magnetic orientation,
Sstar(1) and S§UP™™ (7). At scales [ > 10/, these structure functions exhibit differences up to 14.7° between
the starlight and Planck data, but our Gaussian model indicates that these are actually small differences,
which may be fully accounted for by different angular resolutions. This also means that the estimates of
magnetic field strengths reported in Planck Collaboration Int. XXXV (2016) need not be significantly
altered at better angular resolution.

14. This is the size of the beam used for Planck data in this work.



Chapitre 3

Some perspectives

3.1 Modelling of the turbulent ISM with 3D fBm fields

In Planck Collaboration Int. XXXV (2016), Planck Collaboration Int. XXXII (2016), and Planck
Collaboration Int. XLIV (2016), we provided estimates of the ratio fyr between the standard deviation of
the turbulent component of the magnetic field, B, and the amplitude of the large-scale component By.
In Planck Collaboration Int. XXXV (2016), we gave an estimate in the range 0.3-0.7 from the statsitcs
of the angle between the magnetic orientation and the direction of structures traced by dust in molecular
clouds. Planck Collaboration Int. XXXII (2016) studied that same relative orientation in the diffuse ISM
at intermediate and high Galactic latitudes, and the corresponding estimate of fy; lies in the range 0.6-1.0
with a preferred value at 0.8. These estimates are confirmed in Planck Collaboration Int. XLIV (2016),
where we find fy ~ 0.9 towards the Southern Galactic cap. In this last paper, we also roughly estimated
the spectral index ay of By, appearing in the modelling of the angular power spectrum as a power-law
Cyp x I*™ to be in the range [—2, —3].

In Planck Collaboration Int. XXXII (2016) and Planck Collaboration Int. XLIV (2016), the description
of structures, in both dust density and magnetic field, along the LOS is reduced to the bare minimum,
while statistical properties in the POS are modelled through fy and ayg. Orthogonal approaches have also
been pursued (e.g. Miville-Deschénes et al. 2008; O’Dea et al. 2012), in which the turbulent component of
the magnetic field is modelled along each LOS, independently from the neighbouring ones, as a realization
of a Gaussian random field with a power-law power spectrum. In this type of approach there is no
correlation from pixel to pixel on the sky, and such studies seek to exploit the depolarization along the
LOS, rather than spatial correlations in the POS, to constrain statistical properties of the interstellar
magnetic field.

In a forthcoming paper (Levrier et al. 2016), we explore another avenue, using simple, approximate,
three-dimensional models for the dust density nq and the magnetic field B, on a Cartesian grid, taking
into account statistical correlation properties in all three dimensions ', and building on methods developed
in Planck Collaboration Int. XX (2015) to compare Planck data with synthetic polarization maps. With
this approach, we are able to perform a statistically significant number of simulated polarization maps,
exploring a wide range of physical parameters with sufficient sampling. Actual observations may then be
compared to these simulated maps, using least-square analysis methods, to extract best-fitting parameters,

1. These models make use of fractional Brownian motions (fBm) (Falconer 1990), which have been used previously as toy
models for the fractal structure of molecular clouds, in both density and velocity space (Stutzki et al. 1998; Miville-Deschénes
et al. 2003b). The version of these fields used for B; ensures the null-divergence property.
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in particular the spectral index of the magnetic field 2, and the ratio of turbulent to regular field®. The
other parameters are the depth d of the simulation cubes, the position angle x of the ordered field (see
Fig. 1.3), the spectral index 3, of the density field, and a parameter y,, controlling its fluctuations 4.

We then build synthetic Stokes I, @, and U maps following our method in Planck Collaboration Int.
XX (2015), add noise according to the Planck covariance matrix in the region of the sky we mean to study,
and convolve these noisy maps ® with a circular 15’ FWHM Gaussian beam. The resulting field-of-view is
approximately 12°. From the Stokes maps, we build maps of the normalized Stokes i = I/(I), ¢ = Q/I,
and u = U/I, polarization fraction p, polarization angle ¢, and polarization angle dispersion function S.
The one-point statistics of the 7, g, u, p, 1, S maps, the power spectra of the I, (), and U maps, and the
shape of the 2D distribution function of {S,p} are used as statistical diagnostics for each set of input
parameters (5, 85, Yn, Y5, X, d)

To analyze a given set of polarization maps, we build the same statistical diagnostics and we explore the
input parameter space to find the best-fitting ones, through a simple Metropolis-Hastings algorithm and
Monte Carlo Markov Chains (MCMC). These are built to explore the posterior probability distribution
of the input parameters, assuming flat priors covering a reasonable range of physical interest ”. The
convergence of the Markov chains is tested using the Gelman-Rubin statistic R (Gelman & Rubin 1992).

The method is first validated on a set of three simulated cases, showing that the input parameters are
recovered properly, then applied to Planck 353 GHz maps of the Polaris Flare, to constrain the statistical
properties of the turbulent magnetic field in this diffuse, highly dynamical, non-starforming molecular
cloud. We find in particular that fp = 2.3370:2% and y50% = 0.8775:05 in very good agreement with the
findings of Planck Collaboration Int. XLIV (2016) in another, larger region of the sky. Fig. 3.1 shows the
posterior PDFs of each input parameter and pair of parameters®. This method is adapted to the study
of small fields, and has the advantage of yielding statistical properties of the density field as well. For

instance, in our Polaris Flare study, the best-fit spectral index for the density field is 3, = 2.647025. We

also constrain the thickness of the molecular cloud to d = 10.0‘_"%:? pc, which points to a thin "sheet".

This is interesting as it is not fully consistent with the findings of Miville-Deschénes et al. (2003a) that
the spectral index of the integrated intensity of HI in the nearby Ursa Major cirrus is f; = —3.6 + 0.2,
although the scales probed are somewhat smaller, and it is well-known that the ratio of these scales to
the depth of the cloud affects the measurement of the spectral index (Miville-Deschénes et al. 2003b).

It is however not possible, or at least not simple, to introduce non-Gaussian statistics for the density
and magnetic field using this method (e.g., filamentary structures), nor the particular correlations obser-
ved between the orientations of the structures in the dust and the magnetic field (Planck Collaboration
Int. XXXV 2016).

2. which we write Sp in this study, the power spectrum scaling as P(k) k~PB with the wavenumber k. We have the
relationship any = —fBp.

3. which we write yp instead of fy; in this study. Also note that, due to the limited computational power, the field-of-
view is necessarily small, so the 3D orientation of Bg cannot be constrained as in Planck Collaboration Int. XLIV (2016)
and there is a degeneracy between the chosen pg parameter and the angle v. Consequently, the parameter we constrain is
not actually yp, but its equivalent with respect to the POS projection of By, i.e., ngS = yp/ cos~.

4. The PDF of the density field is log-normal, while those of the components of B; (and therefore B as well) are
Gaussian.

5. They are placed at a distance D = 140 pc, so that the angular size of each pixel is about 6’.

6. i.e., the linear fit parameters of the observed anti-correlation between the two (See Fig. 2.3).

7. In particular, this analysis was applied to the Polaris Flare whose average column density, Ny & 10%! cm~2, is used
to set a prior on the depth d of the cube between 0.5 pc and 33 pc, assuming that the total gas density lies between 10 and
500 cm 3.

8. This is an early version, in which we tried to fit yp and <~ independently. The figure underlines how these two
parameters are in fact degenerate.

2
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FI1GURE 3.1 — Triangle plot showing the 2D PDFs of each pair of input parameters in the analysis of the
Polaris Flare Planck 353 GHz polarization maps, and on top of each column the marginalized 1D PDF

for each parameter separately.
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3.2 Simulated polarized emission maps on the sphere

In a forthcoming paper (Vansyngel et al. 2016), we will present a method to build simulated pola-
rized dust emission maps directly on the HEALPIX sphere, with the aim of providing simple ways to
generate statistically accurate polarized foreground maps to test component separation methods for the
future CMB experiments. This is done in two steps, the first one being identical to the model of Planck
Collaboration Int. XLIV (2016) and leading to simulated I, ), and U maps on the sphere which depend
on a set of six parameters : the two angles (lg, bp) defining the direction of the large-scale field By, the
parameters fyr and ay describing the properties of By, the number of polarization layers N, and the
intrinsic polarization fraction py.

At this stage, the model does not include the alignment observed between the filamentary structures
of the diffuse ISM and the magnetic orientation, so there is no power asymmetry, CF¥/CBB = 1, and
no T'— E correlation at angular scales £ > 30. To remedy this in a phenomenological way, we propose to
alter the maps in spherical harmonics space via the transformation

a%m tcﬁm T
ale — | ap, +Bpon(€)alm
alm f (6) aEm

While ¢ and py are constants, it appears that f and 7 need to be functions of the angular scale to
preserve the statistics of p and v which are reproduced by the first-stage maps. Simple functional forms
are assumed for these, with limits f — 1 and n — 0 at low multipoles ¢. The transition is assumed to be
at a large enough angular scale to be consistent with the failure to observe a return to power symmetry
in F and B modes at low £ in Planck Collaboration Int. XXX (2016).

The parameters are then constrained so that the model power spectra CfE, CfB, and C}E match
those measured by Planck, in particular the spectral indices of the first two, estimated in Planck Col-
laboration Int. XXX (2016) to be agg s = —2.42 &+ 0.02. These are matched for a spectral index of
the turbulent component of the magnetic field in the range ay < —2.5, consistent with the estimate
of Planck Collaboration Int. XLIV (2016) and in fair agreement with the result of Levrier et al. (2016).

The ease with which these models may be computed allows for numerous realizations of Stokes @
and U maps for a given set of parameters, and thus to quantify the variance of dust polarization spectra
for any given region of the sky at intermediate and high Galactic latitudes, which is vital to assess the
robustness of candidate component separation methods. An extension of the method is also proposed to
take into account the observed decorrelation across frequencies (Planck Collaboration Int. L 2016).

3.3 Further perspectives and conclusions

The analyses and modelling approaches presented so far may be extended in several ways :

» The diagnostics used to analyse the Planck polarization maps are limited to one- and two-point sta-
tistics (distribution functions and power spectra). The next step is to use higher-order tools, such as
bispectra, which are already in wide use in a cosmological context to assess non-Gaussianities (Planck
Collaboration XVII 2016), and which were already used in simulations of molecular clouds (Burkhart
et al. 2009).

» The large-scale magnetic field By in our modelling is assumed to be uniform, which is probably fine in
small fields of view, but definitely a problem in full-sky analyses. A more detailed approach would be to
use the models of the large-scale Galactic magnetic field (see, e.g., Planck Collaboration Int. XLIT 2016,
and references therein). For a Solar-neighbourhood modelling, i.e., of the field in the local bubble, we will
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adapt the analytical modelling of the Rosette Nebula (Planck Collaboration Int. XXXIV 2016), which
we may combine with the 3D dust density model of Lallement (2015) to build more realistic model maps
of polarized dust emission in the diffuse ISM, and constrain the turbulent magnetic field B;.

» The modelling of the turbulent magnetic field is currently fully scale-invariant, but we may need to
introduce phenomenological cut-offs at low multipoles ¢ to take into account the energy injection scale.
At the other end of the scale spectrum, when modelling small-scale fluctuations of the polarized emission,
far beyond the capabilities of Planck but in the range of scales accessible with ALMA, taking into ac-
count the various dissipation scales (Momferratos et al. 2014) will become necessary. This also underlines
the necessity to take into account velocity data in the analysis, both on the modelling side and on the
observational side using line emission.

» These phenomenological, synthetic modelling approaches should be complemented with extended stu-
dies using MHD simulations of the ISM, with as much physics as possible (see, e.g., Falceta-Gongalves &
Lazarian 2011; Momferratos et al. 2014; Ntormousi et al. 2016). Only these can justify or refute simpli-
fying assumptions made in synthetic approaches. In particular, it would be interesting to use a modelling
of a large part of the Galactic disk such as the one of Hennebelle & Iffrig (2014) and to compute the
polarization maps for an observer placed within the disk.

As a conclusion, it seems fit to underline the central part played by cross-fertilization between cosmo-
logy and ISM studies within the Planck mission, and especially in the results presented here. The Galactic
foregrounds may be seen by cosmologists as a nuisance, and the initial misinterpretation of the B-modes
detected by the BICEP2 Collaboration (2014) as a cosmological signal may have been the epitome of
that, but in truth, the precise understanding of foregrounds helps in constraining cosmological parame-
ters (BICEP2/Keck Array and Planck Collaborations 2015). Conversely, our analysis of the dust emission
has largely benefitted from the tools and methods developed in the study of the cosmological signal (e.g.,
angular power spectra, correlation analyses), and will continue to do so (e.g., non-Gaussianities).

Planck, in this respect as well as in many others, has brought about something of a revolution.
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ABSTRACT

With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, the metrology of polar-
ization needs to be improved. In particular, it is important to have full knowledge of the noise properties when estimating polarization
fraction and polarization angle, which suffer from well-known biases. While strong simplifying assumptions have usually been made
in polarization analysis, we present a method for including the full covariance matrix of the Stokes parameters in estimates of the
distributions of the polarization fraction and angle. We thereby quantified the impact of the noise properties on the biases in the
observational quantities and derived analytical expressions for the probability density functions of these quantities that take the full
complexity of the covariance matrix into account, including the Stokes I intensity components. We performed Monte Carlo simu-
lations to explore the impact of the noise properties on the statistical variance and bias of the polarization fraction and angle. We
show that for low variations (<10%) of the effective ellipticity between the Q and U components around the symmetrical case the
covariance matrix may be simplified as is usually done, with a negligible impact on the bias. For S/Ns with intensity lower than 10,
the uncertainty on the total intensity is shown to drastically increase the uncertainty of the polarization fraction but not the relative
bias of the polarization fraction, while a 10% correlation between the intensity and the polarized components does not significantly
affect the bias of the polarization fraction. We compare estimates of the uncertainties that affect polarization measurements, address-
ing limitations of the estimates of the S/N, and we show how to build conservative confidence intervals for polarization fraction and
angle simultaneously. This study, which is the first in a set of papers dedicated to analysing polarization measurements, focuses on the
basic polarization fraction and angle measurements. It covers the noise regime where the complexity of the covariance matrix may be
largely neglected in order to perform further analysis. A companion paper focuses on the best estimators of the polarization fraction

and angle and on their associated uncertainties.

Key words. polarization — methods: statistical — methods: data analysis — techniques: polarimetric

1. Introduction

Linear polarization measurements are usually decomposed into
their Stokes components (/, Q, and U), from which one can de-
rive polarization fraction (p) and angle (). However, these are
known to be potentially biased quantities, as first discussed by
Serkowski (1958). At its most fundamental level, this arises be-
cause p is constrained to be positive, while ¢ is a non-linear
function of the ratio of Q and U, so that even if Q and U are
Gaussian distributed, p and ¢ will not be so simple.

While it is advisable to work with the Stokes parameters as
much as possible to avoid such problems, it is sometimes more
convenient to use the coordinates p and ¥ when connecting po-
larization data to physical models and interpretations. For in-
stance, we may be interested in the maximum fraction of po-
larization p observed in our Galaxy or the correlation between
the polarization fraction and the structure of the magnetic field,
which is not easy to carry out over large regions of the sky when

* Appendices are available in electronic form at
http://www.aanda.org

Article published by EDP Sciences

using the Stokes parameters. Thus, many authors, such as Wardle
& Kronberg (1974), Simmons & Stewart (1985), and more re-
cently, Vaillancourt (2006) and Quinn (2012), have suggested
ways of dealing with polarization fraction estimates by trying to
correct for the biases. Vinokur (1965) was the first to focus on the
polarization angle, with later papers by Clarke et al. (1993) and
Naghizadeh-Khouei & Clarke (1993). In all such studies there
have been strong assumptions about the noise properties of the
polarization measurements. The noise on the Q and U compo-
nents are usually considered to be fully symmetric and to have
no correlation between them, and furthermore the intensity is al-
ways assumed to be perfectly known. These assumptions, which
we call the “canonical simplifications”, can be useful in practice,
in that they allow for rapid progress, but on the other hand, they
are often simply not the correct assumptions to make.

Our work is motivated by the need to understand polariza-
tion emission data at microwave to submillimetre wavelengths,
although the analysis is general enough to be applied to any
kind of polarization data. Nevertheless, the details of experi-
mental setup design cannot be ignored, since they affect how
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correlated the data are. Because computation of the Stokes pa-
rameters and their associated uncertainties strongly depends on
the instrumental design, technical efforts have been made to
limit the impact of the instrumental systematics. For example,
single-dish instruments, such as STOKES (Platt et al. 1991),
Hertz (Schleuning et al. 1997), SPARO (Renbarger et al. 2004)
or SCU-Pol (Greaves et al. 2003), had to face strong system-
atics due to noise correlation between orthogonal components
and atmospheric turbulence, while the SHARP optics (Li et al.
2008) allowed the SHARC-II facility (Dowell et al. 1998) at
the Caltech Submillimeter Observatory to be converted into
a dual-dish experiment to avoid these noise correlation prob-
lems. Nevertheless, polarization measurements obtained until
now were limited by systematics and statistical uncertainties.
While a full treatment of the polarization covariance matrix
has been performed by the WMAP analyses (Page et al. 2007;
Jarosik et al. 2011), even in some of the most recent studies,
no correction for the bias of the polarization fraction was ap-
plied (e.g., Dotson et al. 2010), or only high signal-to-noise ratio
(S/N) data were used for analysis (p/o- > 3) in order to avoid
the problem (e.g., Vaillancourt & Matthews 2012). One natu-
rally wonders whether this common choice of S/N greater than
3 is relevant for all experiments and how the noise correlation
between orthogonal Stokes components or noise asymmetry be-
tween the Stokes parameters could affect this choice.

A major motivation for studying polarized emission in
microwaves is extraction of the weak polarization of the cos-
mic microwave background. It has been demonstrated by the
balloon-borne Archeops (Benoit et al. 2004) experiment and via
polarization observations by the WMAP satellite (Page et al.
2007) that the polarized cosmological signal is dominated by
Galactic foregrounds at large scales and intermediate latitude
(with a polarization fraction of 3—10%). Thus the characteri-
zation of polarized Galactic dust emission in the submillimetre
range has become one of the challenges for the coming decade.
The goal is to study the role of magnetic fields for the dynam-
ics of the interstellar medium and star formation, as well as to
characterize the foregrounds for the cosmological polarization
signal. The limitations of instrumental specifications and data
analysis are therefore being continually challenged. Fully map-
ping the polarization fraction and angle on large scales is going
to be a major outcome of these studies for Galactic science in
the near future. This makes it increasingly important to address
the issues of whether polarization measures are biased.

With new experiments such as the Planck' satellite (Tauber
et al. 2010) and the balloon-borne experiments BLAST-Pol
(Fissel et al. 2010) and PILOT (Bernard et al. 2007), or with
ground-based facilities with a polarization capability, such as
ALMA (Pérez-Sanchez & Vlemmings 2013), SMA (Girart
et al. 2006), NOEMA (at Plateau de Bure, Boissier et al.
2009), and XPOL (at the IRAM 30 m telescope, Thum et al.
2008), we are entering a new era in Galactic polarization
studies, when much better control of the systematics is being
achieved. Comprehensive characterization of the instrumental
noise means that it becomes crucial to fully account for knowl-
edge of the noise properties between orthogonal components
when analysing these polarization measurements. Because the

' Planck (http://www.cosmos.esa.int/web/planck) is a project

of the European Space Agency (ESA) with instruments provided by two
scientific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
with telescope reflectors provided by a collaboration between ESA and
a scientific consortium led and funded by Denmark.
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Planck data exhibit large-scale variations over the whole sky in
terms of S/N and covariance matrix, the impact of the full com-
plexity of the noise will have to be corrected in order to obtain
a uniform survey of the polarization fraction and angle — some-
thing that is essential to large-scale modelling of our Galaxy.

This paper is the first part in an ensemble of papers dedicated
to analysis of polarization measurements and to the methods for
handling complex polarized data with a high level of heterogene-
ity in terms of S/N or covariance matrix configurations. We aim
here to present the formalism for discussing polarization fraction
and angle, while taking the full covariance matrix into account.
We quantify how much the naive measurements of polarization
fraction and angle are affected by the noise covariance and the
extent to which the non-diagonal terms of the covariance matrix
may be neglected. Another study, focused on the best estimators
of the true polarization parameters, will be presented in the sec-
ond part of this set. Throughout, we will make use of two basic
assumptions: (i) the circular polarization (i.e., Stokes V) can be
neglected; and (ii) the noise on the other Stokes parameters can
be assumed to be Gaussian.

The paper is organized as follows. We first derive in Sect. 2
the full expressions for the probability density functions of po-
larization fraction and angle measurements, using the full co-
variance matrix. In Sect. 3 we explore the impact of the com-
plexity of the covariance matrix on polarization measurement
estimates and provide conservative domains of the covariance
matrix where the canonical simplification remains valid. We fi-
nally address the question of the S/N estimate in Sect. 4, where
we compare four estimators for the polarization measurement
uncertainty.

2. (p, ¥) probability density functions
2.1. Notation

The goal of this paper is to characterize the distribution of naive
polarization measurements, given the true polarization param-
eters and their associated noise estimates. We denote the true
values by (ly, Qo, Up), representing the true total intensity and

Stokes linear polarization parameters, and with Py = /O3 + UZ.

The quantities (I, Q, U) are the same for the measured values.
The polarization fraction and polarization angle are defined by

VO + Us 1 (Uo)

= = —atan| — 1
Po I s Yo 5 atan O (D
for the true values and

2+ U? 1
p=YE Eatan(%) @)

for the measurements. The true Stokes parameters can be ex-
pressed by Qo = po Iy cos(2¢g) and Uy = pg Iy sin(2y), while for
the measurements Q = p I cos(2y) and U = p I sin(2y). Although
the true intensity Iy is strictly positive, the measured intensity /
may be negative due to noise, thus /) can take values between
0 and +co, while 7 ranges between —oco and +co. The measured
Stokes parameters Q and U are real, finite quantities, ranging
from —co to +00, that with the addition of noise do not necessar-
ily satisfy the relation Q? + U? < I? obeyed by the underlying
quantities, i.e., Qj + Uj < I7. The true polarization fraction po
can take values in the range O to 1, while the measured polariza-
tion fraction p ranges between —oo and +co. Finally we define ¢
and ¢ such that they are both defined in the range [-n/2, +7/2].
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Fig. 1. Illustrations of the noise distribution in the (Q, U) plane. The solid and dashed blue lines represent the 1o~ probability contours around
the true polarization values (Qy, Uy), also parameterized by (po, o). Left: the canonical case (¢ =1, p=0) is shown as a solid line. The dashed
line shows the introduction of a correlation p = 0.5, leading to an effective ellipticity (.4 > 1) rotated by an angle 6. Right: same transformation,

starting from the elliptical case (¢ =2, p =0).

Previous studies of polarization measurements usually made
strong assumptions concerning the noise properties, in particu-
lar: (i) correlations between the total and polarized intensities
were neglected; (ii) correlated noise between Q and U was also
neglected; and (iii) equal noise was assumed on Q and U mea-
surements. We propose instead to use the full covariance matrix
defined by

on o o 0'12 PO 109 PUuTITU
> = g1 0o Ogu | = PO 100 O'Q2 pPOQOU |, (3)
ow Oou Ouu puTIoy poooy Oy’

where oxy is the covariance of the two random variables X
and Y, and the following quantities are usually introduced in the
literature to simplify the notation:

_0O¢ _ Ogu _ O10 _ O
=— p=——; pp=—ri py=—— 4
oy Op0u o109 ooy

Here ¢ is the ellipticity between the Q and U noise components,
and p (which lies between —1 and +1) is the correlation between
the Q and U noise components. Similarly, pp and py are the
correlations between the noise in intensity / and the Q and U
components, respectively.

The parameterization just described could be misleading,
however, since the ellipticity &€ does not represent the effective
ellipticity in the (Q, U) plane if the correlation is not zero. This
is illustrated in Fig. 1 for two initial values of the ellipticity €. A
new reference frame (Q’, U’) where the Stokes parameters are
now uncorrelated can always be obtained through rotation by an
angle

1 2
6= —atan(%]- 5)
2 oH =0y

We can calculate the covariance matrix in the rotated frame by
taking the usual RX RT. In this new reference frame, the errors
on Q' and U’ are uncorrelated and defined as

O'2Q, = 0'2Q cos? 0 + o-%] sin® 6 + ooy sin 26,
(6)
2 _ 2 2 2 20 :
T = 0 sin 0+ o, cos” 0 — ooy sin 20,

so that the effective ellipticity .4 is now given by
2 2 72
2 _ogtopto .
52 o2 —
0 U

where

ot = \/((732 - o—g)2 +402,. (8)

When expressed as a function of the (&, p) parameters, we obtain

’ 1+ &+ /(2 = 1)?2 + 4p2g2?

Eeff = ©)
Tt - (E- 1)+ 4p2e2
and
1 2p¢e
o= Eatan(82 & 1)- (10)

This parameterization of the covariance matrix X in terms of gq
and 6 is preferred in our work for two reasons. Firstly, the shape
of the noise distribution in the (Q, U) space is now contained in
a single parameter, the effective ellipticity .4 (>1), instead of
two parameters, € and p. Secondly, the noise distribution is now
independent of the reference frame. This is also related to the
fact that the properties of the noise distribution do not depend
on three (Iy, po, ¥o) plus six (from X) parameters, but only on
eight, since it actually only depends on the difference in the an-
gles 2y — 6, which simplifies the analysis quite a lot. For what
follows we also define det(X) = 0% as the determinant of the co-
variance matrix.

2.2. 3D probability density functions

The probability density function (PDF) gives the probability of
obtaining a set of values (/, Q, U), given the true Stokes param-
eters (Ip, Qu, Up) and the covariance matrix 2. As a short cut,
we refer to this as the “3D PDF”. When Gaussian noise is as-
sumed for each Stokes component, this distribution in the space
(1, Q, U) is given by

/det(z-l) X -X)TZ (X - Xp)
F(XlXO,Z)Z WCXP [— 0 2 0
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where X and X, are the vectors of the Stokes parameters [/, Q, U]
and [y, Qo, Uy, 7! is the inverse of the covariance matrix (also
called the “precision matrix™), and det(Z~!') = 0% is the determi-
nant of !, This definition ensures that the probability density
function is normalized to 1. The iso-probability surfaces in the
(1, Q, U) space are ellipsoids.

Using normalized polar coordinates, the probability den-
sity function f(1, p, ¥ | Iy, po, ¥o, 2) can be computed explicitly.
However, the expression (see Eq. (A.1)) is a little cumbersome,
so we have put it in Appendix A. We point out the presence
of a factor 2|p|I? in front of the exponential, coming from the
Jacobian of the transformation.

2.83. 2D marginal (p,y) distribution

We compute the 2D probability density function fop(p,y) by
marginalizing the probability density function f(/, p,y) (see
Eq. (A.1)) over intensity / on the range —oo to +oco. The com-
putation is quite straightforward (see Appendix B), leading to
an expression that depends on the sign of p, given in Egs. (A.2)
and (A.3).

In many cases, two further assumptions can be made: (i) the
correlations between / and (Q, U) is negligible, i.e., pp = py = 0;
and (ii) the S/N of the intensity /y/o; is so high that / can be
considered to be perfectly known, yielding I = Iy, as discussed
in Quinn (2012). Making such assumptions allows us to reduce
the covariance matrix X to a 2 X 2 matrix, Z,, which we define
as

2
090 O'QU]: O-p,G [8 P ]

So= — 12

r I(Z)[O'QU ouu -2 \p 1/e (12)

where o, G is defined by det(%,) = 0';’6, leading to
N (T

06 = =—— (13)
P I0 & IO Eeff

This parameter o, g is linked to the normalization of the 2D dis-
tribution, because it represents the radius of the equivalent spher-
ical Gaussian distribution that has the same integrated area as the
elliptical Gaussian distribution. The probability density function
Jf>p can then be simplified, as given in Eq. (A.4). The matching
between the two expressions for fop, Egs. (A.2)—(A.4), when
Ip/o; — oo, is ensured simply by the consistency of the deter-
minants of ¥ and %, when pg =py =0:

6 2.2 2

0 =000y = 0'%130';6. (14)

We also recall that in the canonical case (.4 = 1), the probability
density function can be simplified to

p 1
fip = = exp {——2 |P* + 16— 2ppo cos 24 - m)]} . (5)
no, 207,
where o, also simplifies to o, =0 o/ly =oy/ly. We provide
illustrations of the 2D PDFs in Appendix C.

2.4. 1D marginal p and y distributions

The marginal probability density functions of p and i can be
obtained by integrating the 2D PDF given by Eq. (A.4) over ¢
(between —m/2 and +r/2) and p (between 0 and +o0), respec-
tively, when assuming the S/N on the intensity to be infinite.
These two probability density functions theoretically depend on
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Do, Yo, and %,. While the expressions obtained in the general
case (Aalo et al. 2007) are provided in Appendix D, the expres-
sion for the marginal p distribution reduces to the Rice law (Rice
1945) when e=1 and p=0:

(p* + py)
R<p|po,o-p)=%exp(——2° 5|22
o 20'p o

(16)
where 7y(x) is the zeroeth-order modified Bessel function
of the first kind (Abramowitz & Stegun 1964). This expres-
sion no longer has a dependence on . With the same as-
sumptions, the marginal ¢ distribution (extensively studied in
Naghizadeh-Khouei & Clarke 1993) is given by

1 1 2 272 19,2
G| po,to,0p) = N { 7 +10e™ [1 + erf(no)]}e—polo/%—p’
17

where 170 = (poly/ \/fap) cos 2(¥—p). This distribution depends
on po and is symmetric about .

3. Impact of the covariance matrix on the bias

We now quantify how the effective ellipticity of the covariance
matrix affects the bias of the polarization measurements, com-
pared to the canonical case. We would like to determine under
what conditions the covariance matrix may be simplified to its
canonical expression, in order to minimize computations. The
impact of the correlation and the ellipticity of the covariance ma-
trix are first explored in the 2D (p, ) plane with infinite intensity
S/N. The cases are then investigated of finite S/N on intensity
and of the correlation between total and polarized intensity.

3.1. Methodology

Given a collection of measurements of the same underlying
polarization parameters (po, o), we build the statistical bias
on p and ¢ by averaging the discrepancies Ap=p — po and
Ay = — o (always defining the quantity i — iy between —7/2
and +n/2). With knowledge of the probability density function
foo(p, ¥ | po, Yo, Z,), we can obtain the statistical bias directly by
computing the mean estimates

Ap (pos¥0,%,) = P — po, (18)
and
AW (o, 0, 2p) = ¥ — Yo. (19)

Here p and i are the mean estimates from the probability density
function, defined as the first moments of fop:

+00 Yo+m/2

P =f f pap(p, ¥ | po, o, 2,) dpdis; (20)
0 Wo-n/2

and

_ +00 Wo+m/2

¥ =f f ¥ foo(p, ¥ | po. Yo, Z,) dpdy. (21
0 Wo-m/2

To quantify the importance of this bias, we can compare it to the
dispersion of the polarization fraction and angle measurements,
00 and oy 0. These are defined as the second moments of the
probability density function fop:

+00 /2
oo = fo f , (P = D) fin(ps ¥ | po, o, Zp)dpdys;  (22)
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and

+00 T/2 .
Tho = fo f - (¢ - lﬂ)z Jfoo(p, ¥ | po, Yo, 2,) dpdy. (23)

Here subscript O signifies that this dispersion has been computed
using full knowledge of the true polarization parameters and the
associated probability density function.

We chose o, g introduced in Sect. 2.3 as our characteristic
estimate of the polarization fraction noise in its relationship to
the covariance matrix Z,. This is used to define the S/N of the
polarization fraction pg/o, g, which is kept constant when ex-
ploring the ellipticity and correlation of the Q — U components.
In Sect. 4 we discuss how robust this estimate is against the true
dispersion o 0.

We define three specific setups of the covariance matrix to
investigate: (i) the canonical case, .4 = 1, equivalent to e =1,
p=0; the low regime, 1 <e.s<1.1; and the extreme regime,
1 <e&.4 <2. These are used in the rest of this paper to quantify
departures of the covariance matrix from the canonical case and
to characterize the impact of the covariance matrix on polariza-
tion measurements in each regime. It is worth recalling that to
each value of the effective ellipticity &.¢ there corresponds a
set of equivalent parameters &, p, and 6. The average level of
the effective ellipticity &.¢ in the Planck data over the full sky
on a one-degree scale has been estimated around 1.12 (Planck
Collaboration Int. XIX 2014), which lies at the limit of the low
regime. This does not prevent observing higher effective elliptic-
ities in specific regions of the sky, which could fall in the extreme
regime.

3.2. Q-U ellipticity

We assume here that the intensity is perfectly known and that
there is no correlation between the total intensity / and the polar-
ized intensity, so that I = Iy and pg = py =0. In this case we can
now refer to Eq. (A.4) for the 2D probability density function.

Unlike the canonical case, where the effective ellipticity dif-
fers from e.4 = 1, the statistical biases on the polarization frac-
tion and angle become dependent on the true polarization an-
gle o, as illustrated in Fig. 2 for the special case of =0 (no
correlation). For extreme values of the ellipticity (e.g., €. =2),
the relative bias on p oscillates between 0.9 and 1.5 times the
canonical bias (g = 1). These oscillations with ¢ quickly van-
ish when the ellipticity gets closer to 1, as shown for g.4=1.1
in the figure. The presence of correlations (i.e., p # 0) increases
the effective ellipticity of the noise distribution associated with a
global rotation, as detailed in Sect. 2.1. Thus correlations induce
the same oscillation patterns as observed in Fig. 2 for an effec-
tive ellipticity larger than 1 and a null correlation, but amplified
at the corresponding effective ellipticity &.¢ and shifted by an
angle 6/2, according to Eqgs. (9) and (10), respectively.

The top panel of Fig. 3 shows the dependence of the polar-
ization fraction bias on the effective ellipticity for three levels of
S/N, po/opc=1, 2, and 5, and including the full range of true
polarization angle y. The figure indicates the variability interval
of Ap/o, for each ellipticity, for changes in ¥ over the range
—nt/2 to /2. We observe that the higher the S/N, the stronger the
relative impact of the ellipticity compared to the canonical case.
In the low regime the relative bias to the dispersion increases
from 9% to 12% (compared to 10% in the canonical case) at a
S/N of 5, while it spans from 69% and 73% (around the 71%
of the canonical case) at a S/N of 1. In the low regime, there-
fore, the impact of the ellipticity on the bias of the polarization
fraction represents only about 4% of the dispersion, regardless
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Fig. 2. Impact of the initial true polarization angle i, and of vary-
ing effective ellipticity . on the relative polarization fraction bias
Ap/op (top) and the relative polarization angle bias Ay/o o (bottom).
We assume no correlation here, so that § =0, and we set the S/N to
Po/0 6 =2. The canonical case (¢ = 1) is shown by the red line.

of the S/N, which can therefore be neglected. However, in the
extreme regime, the impact of the ellipticity can go up to 33% at
intermediate S /N (~2), which can no longer be neglected.
Concerning the impact on polarization angle — while no bias
occurs in the canonical case, some oscillations in the bias Ay
with ¢ appear as soon as g > 1. The amplitude can reach up
to 24% of the dispersion in the extreme regime and up to 4%
in the low regime, as illustrated in the bottom panel of Fig. 2.
Again, these oscillations are shifted and amplified in the pres-
ence of correlations between the Stokes parameters, compared
to the case with no correlation. As an overall indicator, in the
bottom panel of Fig. 3 we provide the maximum bias Max|Ay/|
normalized by the dispersion oo over the full range of ¥ as a
function of the ellipticity. This quantity barely exceeds 24% (i.e.,
~9°) in the worst case, i.e., for e.¢ =2 and low S/N, and it falls to
below 4% (i.e., ~1.5°) in the low regime. Thus the bias on y al-
ways remains well below the level of the true uncertainty on the
polarization angle at the same S/N (see Sect. 4), so that the bias
of the polarization angle induced by an ellipticity . > 1 can be
neglected to first order for the low regime of the ellipticity, i.e.,
when there is less than a 10% departure from the canonical case.

3.3. | uncertainty

The uncertainty in the total intensity / has two sources: the mea-
surement uncertainty expressed in the covariance matrix, and an
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Fig. 3. Impact of the effective ellipticity e.4 on the levels of bias. Top:
Ap/o, as a function of the effective ellipticity &, displayed for three
levels of the S/N, po/o,6=1, 2, and 5. The grey shaded regions indi-
cate the whole extent of variability due to v and 6 spanning the range
—m/2 to m/2. Bottom: maximum |Ay|/c o value for ¢, and 6 spanning
the range —m/2 to /2, plotted as a function of the effective ellipticity
&, displayed for four levels of the S/N, py/o ), =0.5, 1, 2, and 5.

astrophysical component of the uncertainty due to the imper-
fect characterization of the unpolarized contribution to the to-
tal intensity. This second source can be seen, for instance, with
the cosmic infrared background in Planck data: its unpolarized
emission can be viewed as a systematic uncertainty on the to-
tal intensity (dominated by the Galactic dust thermal emission),
when one is interested in the polarization fraction of the Galactic
dust. To retrieve the actual polarization fraction, it is necessary
to compute it through

JO?2? 2
p= M, (24)
(I-AD

where Al is the unpolarized emission, which is imperfectly
known. The uncertainty oa; on this quantity can be viewed as
an additional uncertainty o; on the total intensity, and therefore
the S/N has to be written Io/o ;= — Al)/0a;.

To consider the effects on polarization quantities, we first re-
call that, because of its definition, the measurement of polariza-
tion angle y is not affected by the uncertainty on intensity (when
no correlation exists between / and Q and U), contrary to the
polarization fraction p, which is defined as the ratio of the po-
larized intensity to the total intensity. Thus the uncertainty of the
total intensity does not induce any bias on .
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Fig. 4. Polarization fraction bias, normalized to the true value py, as a
function of the S/N Iy/o, plotted for three values of the polarization
S/N, po/opc, and values of the effective ellipticity .4 covering the
canonical (full line), low (dark grey shaded region), and extreme (light
grey shaded region) regimes of the covariance matrix. The intensity cor-
relation coefficients are set to py = py = 0. We only consider the domain
where (Io/o7) > (po/ T pG).

To quantify the influence of a finite S/N Ip/o; on the bias
of p, we compute the mean polarization fraction over the PDF:

2 2
ﬁ:fff—”Q;UF(I,Q,UuO,QO, Uo,5)dI1dQdU,  (25)

with F' given by Eq. (11). We write it this way, because using
fop given by Egs. (A.2) and (A.3) would lead to both positive
and negative logarithmic divergences for p — =*oco (related to
samples for which I — 0). These divergences can be shown to be
artificial by using the Gaussian PDF of (/, Q, U) instead of f>p.

The presence of noise in total intensity measurements in-
creases the absolute bias Ap = p — po, as shown in Fig. 4, where
Ap, normalized by the true value py, is plotted as a function of
the S/N Iy/o;. This is shown for three levels of the polarization
S/N po/opc=1, 2, and 5, and the three regimes of the covari-
ance matrix, assuming that pp = py =0.

The bias may be enhanced by a factor of 1.5 to 4 times py
when the S/N on I goes from infinite (i.e., perfectly known 7) to
about 2. It then drops again for lower S/N, which is the result of
the increasing number of negative p samples. We only consider
the domain where (Io/0) > (po/op.G).

Comparison of the bias to the dispersion o, as was done in
the previous section, is not straightforward when the total inten-
sity is uncertain. This is because the integral defining oo (see
Eq. (22)) has positive linear divergences for p — =+co. Unlike
the case of p, this divergence cannot be alleviated by working in
(1, Q, U) space.

To overcome this we therefore used a proxy o, which is
the dispersion of p computed on a subset of (I, Q, U) space that
excludes total intensity values below wly, with w = 1077, This
threshold is somewhat arbitrary, as 0, increases linearly with
1/w. The value 1077 is merely meant to serve as an illustration.
Figure 5 shows Ap/c,, as a function of Iy/o; for the same val-
ues of the polarization S/N pg /o), g and the same regimes of the
covariance matrix as in Fig. 4. At high S/N for I, we asymptot-
ically recover the values obtained in the top panel of Fig. 3. As
long as Ip/o; > 5, the relative bias on p is barely affected by the
uncertainty on the intensity, especially for low polarization S/N,
Po/0p.G- A minor trend is still seen in the range 5 < Ip/o; < 10
for po/o ) =>35. The relative bias may be enhanced by a factor
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Fig. 5. Same as Fig. 4, but showing the bias on the polarization fraction
relative to the dispersion proxy o . See text for a description of this
quantity.

of around 2 in that case, when the S/N on intensity and polar-
ization are ~5. However, this situation is unlikely to be observed
in astrophysical data, since the uncertainty on total intensity is
usually much less than for polarized intensity.

Contrary to these high S/N (Iy/o; > 5) features, which are
quite robust with respect to the choice of threshold wl, the drop
in relative bias at lower intensity S/N, i.e., Ip/o <35, is essen-
tially due to the divergence of the dispersion of p. This part of
Fig. 4 should thus be taken as nothing more than an illustration
of the divergence at low S/N for /. It should be stressed, how-
ever, that this increase in the dispersion of p has to be carefully
considered when dealing with low S/N intensity data, which can
be the case well away from the Galactic plane.

3.4. Correlation between | and Q-U

With non-zero noise on total intensity, it becomes possible to
explore the effects of the coefficients pp and py, corresponding
to correlation between the intensity / and the (Q, U) plane. We
first note that introducing correlation parameters pp and py that
are different from zero directly modifies the ellipticity £ and cor-
relation p between Stokes Q and U. Simple considerations on
the Cholesky decomposition of the covariance matrix Z (given
in Appendix E) show that for a given ellipticity & and correlation
parameter p, obtained when pg =py =0, the ellipticity &’ and
correlation p” become

l-p

0 and  p' = popu+p+J(1-p}) (1 -p}) (26)

when pp and py are no longer zero. Consequently, non-zero pg
and py lead to similar impacts as found for a non-canonical ef-
fective ellipticity (e. # 1), discussed in Sect. 3.2. Moreover, to
investigate the sole impact of non-zero pp and py with a finite
S/N on the intensity, we have compared the case (&, p, po, pv) to
the reference case (&', p’,0,0). We find that the relative change
of the polarization fraction bias Ap is at most 10-15% over the
whole range of Iy/o; explored in this work (i.e., Ip/o; > 1).

The difference between the polarization angle bias computed
for (e, p, po, pv) and for the reference case (¢’, p’, 0, 0) is at most
Ay — Ayres ~ 4° and essentially goes to zero above Iy/o; ~ 2-3.
The dependence of the change in bias with (pg, py) is similar
to the one for Ap/Ap,., except that it depends solely on py for
Yo =0 and solely on py for o =n/4.

4. Polarization uncertainty estimates

If we are given the polarization measurements and the noise co-
variance matrix of the Stokes parameters, we would like to de-
rive estimates of the uncertainties associated with the polariza-
tion fraction and angle. These are required to (i) define the S/N of
these polarization measurements and to (ii) quantify how impor-
tant the bias is compared to the accuracy of the measurements. In
the most general case, the uncertainties in the polarization frac-
tion and angle do not follow a Gaussian distribution, so that con-
fidence intervals should be used properly to obtain an estimate
of the associated errors, as described in Sect. 4.5. However, it
can sometimes be assumed as a first approximation that the dis-
tributions are Gaussian, in order to derive quick estimates of the
p and ¥ uncertainties, defined as the variance of the 2D distri-
bution of the polarization measurements. We explore below the
extent to which this approximation can be utilized, when using
the most common estimators of these two quantities.

4.1. Standard deviation estimates

To compare the robustness of the uncertainty estimates, we build
10 000 Monte Carlo simulated measurements in each of the three
regimes of the covariance matrix (canonical, low, and extreme),
by varying the S/N of p and the polarization angle i inside
the range —x/2 and /2. We use the simulations to compute the
posterior fraction of measurements for which the true value pg
or Y falls inside the +o range around the measurement. This
provides the probability £ shown in Figs. 6 and 7 for p and ¢,
respectively.

We first focus on the true uncertainty estimates, as defined
in Sect. 3.1. We observe that the o, true estimates (top left of

Fig. 6) fall below the Gaussian value erf (V2/2) (i.e., 68%) once
the S/N goes below 3. The o o true estimates (left of Fig. 7) pro-
vide conservative probabilities (P > 68%) for S/N >0.5. This is
also shown in Fig. 8 as a function of the S/N, for the canon-
ical, low, and extreme regimes of the covariance matrix. It is
not strongly dependent on the ellipticity of the covariance ma-

trix. It shows a maximum of 7/ V12 ~52° at low S/N, and con-
verges slowly to O at high S/N (still ~10° at §/N =3). Thus we
might imagine using such estimates as reasonably good approx-
imations of the uncertainties at high S/N (>3) for p, and over
almost the entire range of S/N for . However, these true p and
¥ uncertainties, o, and o, respectively, depend on py and
Yo, which remain theoretically unknown. Thus we can only pro-
vide specific estimates of those variance quantities, as explained
below.

4.2. Geometric and arithmetic estimators

Two estimates of the polarization fraction uncertainty can be
obtained independently of the measurements themselves, which
makes them easy to compute: (i) the geometric (0, ) estimate;
and (ii) the arithmetic (0, o) estimate. The geometric estimator
has already been introduced earlier when we derived the expres-
sion for the 2D (p, ¥) PDF fop. It is defined via the determinant
of the 2D covariance matrix 2, as det(Z)) =0';‘7’G, with its ex-
pression given in Eq. (13). We recall that the determinant of the
covariance matrix Z, is linked to the area inside a probability
contour and independent of the reference frame of the Stokes pa-
rameters. In the canonical case, this estimate gives back the usual
expressions, 0, G = 0g/lo =0y /1o, used to quantify the noise on
the polarization fraction. It can be considered as the geometric
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mean of op and oy when there is no correlation between them;
i.e., a'f))G =.0'Q0'U-/I§. . - - -
The arithmetic estimator is defined as a simple quadratic

mean of the variance in Q and U:

10-2Q+0—%/:0—_2Q(82+1). (27)
2 o2

Opa =

This estimate also gives back o, =0¢/lp=0y/ly in the
canonical case. Furthermore, it is also independent of the ref-
erence frame or of the presence of correlations.
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The two estimators have very similar behaviour, as can be
seen in the top and bottom right-hand panels of Fig. 6. They
agree perfectly with a 68% confidence level for S/N po/o 0 >4
and for standard simplification of the covariance matrix. Both es-
timators provide conservative probability (£ >68%) in the S/N
range 0.5—4. The impact of the effective ellipticity of the covari-
ance matrix (grey shaded area) is stronger for higher values of
the S/N (>2) and can yield variations of 30% in the probabil-
ity P for the extreme regime. These estimators should be used
cautiously for high ellipticity, but provide quick and conserva-
tive estimates in the other cases.
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Fig. 8. True polarization angle uncertainty, o, as a function of the
S/N, po/0 . The three regimes (canonical, low, and extreme) of the
covariance matrix are explored (solid line, light, and dark grey shaded
regions, respectively).

4.3. Conventional estimate

The conventional determination of the uncertainties proposed by
Serkowski (1958, 1962) is often used for polarization determi-
nations based on optical extinction data. Although investigated
by Naghizadeh-Khouei & Clarke (1993), these conventional un-
certainties still do not include asymmetrical terms and correla-
tions in the covariance matrix. Here we extend the method to the
general case by using the derivatives of p and y around the ob-
served values of the 7, O, and U parameters. It should be noted
that, since this approach is based on derivatives around the ob-
served values of (1, Q, U), itis only valid in the high S/N regime.
The detailed derivation, provided in Appendix F, leads to the
expressions

0',2>,c = # X (Q20'2Q + U2O'%] + ptlPo?
+2QUa gy - 21Qp 10 — 2UUp*oy) (28)
and
o2 = 1 Qi) + Uty = 20Uoau rad’ (29)
¥,C 4 (02 + U?)? ’

where I, Q, U, and p are the measured quantities, and oyy are
the elements of the covariance matrix. We recall that the max-
imum uncertainty on i is equal to 7/ V12rad (integral of the
variance of the polarization angle over a flat distribution between
—n/2 and 7r/2). When o can be neglected, we obtain

on'%] + UZO'ZQ —-2QUogu ¢
Oyc = X —— rad.

on.zQ +U%07, +2QUogy  2p

(30)

Because the uncertainty of ¢ is also often expressed in degrees,
we provide the associated conversions: 7/ V12 rad =51°96 and
1/2rad =28?65. Moreover, under the canonical assumptions, we
recover o, c =0,6=0¢9/lo=0y/lp and oy c =0, c/2p rad.
Since the conventional estimate of the uncertainty o, c is
equal to o, g under the standard simplifications of the covari-
ance matrix, it has the same deficiency at low S/N (see bottom
left-hand panel of Fig. 6). The impact of the effective elliptic-
ity of the covariance matrix tends to be negligible at high S/N
(po/opG > 4) and remains limited at low S/N. Thus this estima-
tor of the polarization fraction uncertainty appears more robust
than the geometric and arithmetic estimators, while still being

0.20
10.0

0.15—~,
ol
© <
o o
.10 =
Y 0.10 g
S
0.05%

0.1 0.00

0.1 1.0 10.0
Po/Gp,o

Fig. 9. Probability density function (PDF) of the measured S/N p/c
(where 0, is the geometric estimate) as a function of the true S/N
Po/0 0, with no ellipticity and correlation in the covariance matrix .
The mean likelihood, p/o ¢ (full line), tends to \7/2 at low S/N and
to the 1:1 relation (dashed line) at high S/N (po/0 0 > 2).

easy to compute and valid (even conservative) over a wide range
of S/N.

The conventional estimate of the polarization angle uncer-
tainty, oy c, is shown in Fig. 7 (right-hand panel) in the canon-
ical, low, and extreme regimes of the covariance matrix. It ap-
pears that o c is strongly under-estimated at low S/N, mainly
due to the presence of the term 1/p in Eq. (30), where p is
strongly biased at low S/N. For S /N >4, the agreement between
the probability  and the expected value is good, while the im-
pact of the ellipticity of the covariance matrix becomes negligi-
ble only for §/N > 10. This estimator can certainly be used at
high S/N.

4.4. S/N estimates

It is important to stress how any measurement of the S/N p/o, ¢
is strongly affected by the bias on the measured polarization
fraction p, as shown in Fig. 9. We observe that at high S/N
(po/opp>2), the measured S/N, here p/o, g, is very close to
the true S/N. The mean likelihood of the measured S/N (solid
line) flattens for lower true S/N, such that p/o, g tends to /2
for po/opo <1, which comes from the limit of the Rice (1945)
function when po/op,0 — 0. This should be taken into account
carefully when dealing with polarization measurements at inter-
mediate S/N. For any measurement with a S/N pg/o,0<2, it
is in fact impossible to obtain an estimate of the true S/N, be-
cause this is fully degenerate owing to the bias of the polariza-
tion fraction.

4.5. Confidence intervals

We have seen the limitations of the Gaussian assumption for
computing valid estimates of the polarization uncertainties. To
obtain a robust estimate of the uncertainty in p and ¢ at low
S/N, one has to construct the correct confidence regions or in-
tervals. The 1% confidence interval around a measurement p
is defined as the interval that has a probability of containing
the true value py exactly equal to 4/100, where (1 — A) is
called “critical parameter”. This interval is constructed from the
PDF and does not require any estimate of the true polariza-
tion parameters. Mood & Graybill (1974), Simmons & Stewart
(1985), and Vaillancourt (2006) have provided a simple way to
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construct such confidence intervals for the polarization fraction
p when the usual simplifications of the covariance matrix are as-
sumed. Naghizadeh-Khouei & Clarke (1993) provide estimates
of the confidence intervals for the polarization angle ¢ under
similar assumptions, and this is even simpler, because in that
case fu (¥ | po, Yo, Z,) only depends on the S/N po/op .

Once the covariance matrix is allowed to include ellipticity
and correlations, we see in Sect. 2.4 and Appendix D how the
marginalized PDFs fp(P | Do, Yo, ZP) and fl//(lp | Do, Yo, ZP) de-
pend on the true polarization fraction py and the true polarization
angle ¥. This leads us to consider i as a “nuisance parameter”
when building confidence intervals of pg, and vice-versa. We
propose below an extension of the Simmons & Stewart (1985)
technique, using an iterative method to build the confidence in-
tervals of py and ¥ simultaneously.

For each possible value of py and ¢ (spanning the range 0
to 1, and —nr/2 to m/2, respectively), we compute the quantities
p-, p~, ¥—, and ¥~, which provide the lower and upper limits in
p and y of the region Q(4, po, ¥o) defined by

A
ﬂ oo (ps 0] po, o, Zp) dpdys = o5
Q(4,po-o)

such that the contour of the region Q is an iso-probability con-
tour of the PDF f,p. We stress that the choice of a confidence
interval is still subjective and may be shifted by any arbitrary
value of p or y, provided that the integral over the newly defined
region is also A4/100. The definition we have chosen ensures that
the region Q(4, po, ¥o) is the smallest possible. We also note that

P v
f f Sfop dpdys > ff Sfop dpdy,
p- Jyo Q(A,po.t0)

which implies that the rectangular region bounded by p_, p~,
Y_, and ¢~ is a conservative choice. For a given A and co-
variance matrix %,, we can finally obtain a set of four upper
and lower limits on p and ¢: p_(po, ¥0); p~(po. ¥0); ¥-(po, ¥o);
and ¥~ (po,¥o). We illustrate this with the example of (p, ¥)
set to (0.1, n/8) in Fig. 10. For given polarization measure-
ments (p, ), we trace the loci p_(po,¥o)=p (dashed line),
P~ (po, ¥o) = p (dot-dash line), ¥ _(po, ¥o) = ¢ (long dashed line),
and ¥~ (po, Yo) =y (dash dot-dot-dotline). Finally, the 68% con-
fidence intervals [p0 , pop] of po and [l//low l//gp ] of Y are de-
fined by building the smallest rectangular region (solid line in
Fig. 10) that simultaneously covers the domain in py and i be-
tween the upper and lower limits defined above and which satis-
fies the conditions:

€2

(32)

v = mm,,u(p P {Po, Yo € %"W%"]})

= max,,o(p p- {Po» o € [ug™, ¥y ]});

we™ = miny, (¥ = v {po € ps™, py’1, Yo) )

vy = maxy, (¥ =y {po € (5", P1. Yo} ). G3)

Using these conditions, the confidence interval of pg takes the
nuisance parameter ¥ over its own confidence interval into ac-
count, and vice-versa. This has to be constructed iteratively,
starting with 1,//%)"‘” = — /2 and l,//gp =m/2, to build first guesses
for p™™ and p,’, which are then used to build a new estimate
of the confidence intervals of i, and so on until convergence.
In practice, it converges very quickly. We emphasize that these
confidence intervals are conservative, because they include the
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Fig.10. Construction of 68% confidence intervals [pf™, p’] and
[z//"’“’ %p ] (full line box) of py and ¥, based on the upper and lower
1001 p=p-,p=p ¥ =¢_,and Y =y, built from PDFs f, and a given
measurement (p, ) (indicated by the cross).

impact of the nuisance parameters, implying that

A

. low up
s <0 <0 )0, 2 Too

Pr (pg’w <po<py 5

(34)

regardless of the true values pg, Y.

5. Summary

This paper represents the first step in an extensive study of po-
larization analysis methods. We focused here on the impact of
the full covariance matrix on naive polarization measurements
and especially the impact on the bias. We derived analytical ex-
pressions for the PDF of the polarization parameters (/, p, ) in
the 3D and 2D cases, taking the full covariance matrix ¥ of the
Stokes parameters I, @, and U into account.

The asymmetries of the covariance matrix can be character-
ized by the effective ellipticity .4, expressed as a function of the
ellipticity & and the correlation p between Q and U in a given
reference frame, and by the correlation parameters pp and py
between the intensity / and the Q and U parameters. We quanti-
fied departures from the canonical case (.4 = 1), which are usu-
ally assumed in earlier works on polarization. We explored this
effect for three regimes of the covariance matrix: the canoni-
cal case (e.¢ = 1); the low regime, 1 < &4 < 1.1; and the extreme
regime 1 <&, <2. We first emphasized the impact of the true
polarization angle o, which can produce variations in the polar-
ization fraction bias of up to 30% of the dispersion of p, in the
extreme regime, and up to 5% in the low regime. We then esti-
mated the statistical bias on the polarization angle measurement
. This can reach up to 9° when the ellipticity or the correlation
between the Q and U Stokes components becomes important
(geff ~ 2) and the S/N is low. However, when values of the effec-
tive ellipticity are in the low regime (i.e., less than 10% greater
than the canonical values) the bias on ¢ remains limited (i.e.,
<1°), and well below the level of the measurement uncertainty
(by a factor of 5-25). Thus the bias on ¢ can be neglected, to
first order, for small departures of the covariance matrix from
the canonical case.
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On the other hand, we quantified the impact of the uncer-
tainty of the intensity on the relative and absolute statistical bias
of the polarization fraction and angle. We provided the modified
PDF in (p, y) arising from a finite S/N of the intensity, Iy/o7.
We showed that, above an intensity S/N of 5, the relative bias on
the polarization fraction p generally remains unchanged at polar-
ization S/N po/o ) <2, while it is slightly enhanced when the
intensity and the polarization S/N lie in the intermediate range,
Po/opc>2. For S/N of the intensity Io/o; below 5, the relative
bias on p suddenly drops to 0, because of the increasing disper-
sion. Indeed, the absolute bias can be higher by a factor as large
as 5 when the S/N on  drops below 2 to 3; this is associated with
a dramatic increase in the dispersion of the polarization fraction,
which diverges and strongly overwhelms the increase of the bias
at low S/N. The uncertainty of the intensity thus has to be taken
into account properly when analysing polarization data for faint
objects, in order to derive the correct polarization fraction bias
and uncertainty. Similarly, the case of faint polarized objects on
top of a varying but unpolarized background can lead to a ques-
tion about the correct intensity offset to subtract, yielding an ef-
fective additional uncertainty on the intensity.

The impact of correlations between the intensity and the O
and U components has also been quantified in the case of a finite
S/N on the intensity. It has been shown that the bias on p is
only slightly affected (below 10% difference compared with the
canonical case) even at low S/N on /, when the correlations pg
and py span the range —0.2 to 0.2.

‘We have additionally addressed the question of how to obtain
a robust estimate of the uncertainties on polarization measure-
ments (p, ). We extended the often-used procedure of Simmons
& Stewart (1985) by building confidence intervals for polariza-
tion fraction and angle simultaneously, taking the full properties
of the covariance matrix into account. This method makes it pos-
sible to build conservative confidence intervals around polariza-
tion measurements.

We have explored the domain of validity for the commonly
used polarization uncertainty estimators based on the variance
of the PDF (assuming a Gaussian distribution). The true disper-
sion of the polarization fraction has been shown to provide ro-
bust estimates only at high S/N (above 3), while the true disper-
sion of the polarization angle yields conservative estimates for
S/N>0.5. Simple estimators, such as the geometric and arith-
metic polarization fraction uncertainties, appear sensitive to the
effective ellipticity of the covariance matrix at high S/N, while
they provide conservative estimates over a wide range of S/N
(above 0.5) in the canonical case. The conventional method, usu-
ally adopted to analyse optical extinction polarization data, pro-
vides the most robust estimates of o, for S/N above 0.5, with
respect to the ellipticity of the covariance matrix, but poor esti-
mates of o, which are valid only at very high S/N (above 5).

We have seen how much the naive polarization esti-
mates provide poor determinations of the true polarization
parameters and how it can be difficult to recover the true
S/N of a measurement. In a companion paper (Montier et al.
2015), we review different estimators of the true polarization
from experimental measurements that partially correct this bias

in p and ¢, using full knowledge of the polarization covariance
matrix.
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Appendix A: Expressions for PDFs

Here we present expressions for the 2D PDFs that are discussed in Sect. 2:

T

-1
p 1 cos2y) = po Io cos(2y) } !
p 1 sin(2y) — po 1o sin(240)

2p| I2 1
fU, p,yllo, po, o, %) = S L exp [——

Q2303

2a

il 1+2 9
a2 a2 a

2no3

280 1 { ﬁ%} Xp(ﬁ%]

Foo(p, ¥ 1o, po, o, %) = i eXP[—EOY]{

2no3

1+erf(

-1,
p 1 cos(2y) — po Iy cos(zu/o)} ;
p 1 sin(2y) — po Io sin(240)

%)]} for p>0;

V2a

I 215 215
Fo(p, ¥ 1y, po, o, 2) = Uil exp ——Oy - %'% + L 1+ 6—0 exp & 1 —erf & for p<O0;
2 T2 @32 @ 2w

2 P

Jfoao(p. ¥ | po, Yo, 2)) = Lz exp
o

p sin(2y) — po sin(2¢)
p.G

where we have defined the functions

1y 1
o = [pcosZ¢ ! pcos2w],
psin 2y psin 2y
I 1
B = [pCOSZ(// Pt poCOSZ(//o],
psin 2y Do sin 2y
1 ' 1
y = [ pocos2yg | T | pocos2yy ] )
Po sin 2y Po sin 2y

Appendix B: Computation of fyp
The 3D PDF of (/, p, ¢) is given by

F, p,y) =2\p| I* F (I, pI cos 2y, pI sin2y) .

1 p cosy) — pocosuo) | 51| P €OS(2¥) = po cos(2io)
p sin(2y) — po sin(2yo)

]] for o;=0.

(A1)

(A2)

(A3)

(A4)

(A.5)

(B.1)

To compute the 2D PDF of (p, ), we marginalize over total intensity. However, some care is required here, because the above
expression for f(/, p, ) is only valid for pI > 0 (i.e., we cannot measure negative p unless / happens to be negative owing to noise)
and f must be taken to be zero otherwise. This means that the marginalization is performed over I > 0 for positive p and over I < 0

for negative p:
+00
o = f 2|pl > F (I, pI cos 2y, pIsin2¢)dI, for p>0;
0

0
ﬁD:f 2|p| P F (I, pI cos 2y, pIsin2y)dI,  for p<O0.

00

The integrand may be written so as to exhibit the dependence on total intensity,

2|p| I%
fe Ipl p[

- (2m)32a3

—é (Per - 2118+ Igy)],

and then we make use of the functions (Gradshteyn & Ryzhik 2007):

_ 2 —xPP+2yl _ Y ,ﬂ2y2+x y’ Yy o\l
G_(x,y)—ﬁole yidr ——ﬁ"r ;TCXP(Y 1 —erf % 5

+00 2 2
_ 2 —xP+oylqy Y [ 2y~ +x y Y
Gloo) = L Ferm il = 2x2 * X 4 exp(;) 1+ erf(ﬁ)}-

Elementary replacement of (x, y) by (a/2, Iy3/2) yields the PDF of Egs. (A.2) and (A.3).
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Appendix C: lllustrations of f5p

We illustrate the shape of the 2D PDF fop(p, ¥ | Iy, po, Yo, 2) in Fig. C.1, for the case of a perfectly known intensity having no
correlation with the polarization. Starting from a given couple of true polarization parameters, o =0° and py = 0.1, the PDF is
computed for various S/Ns, po/o, . and settings of the covariance matrix. The S/N po/o ) g is varied from 0.01 to 0.5, 1, and 5
(top to bottom). The dashed crossing lines show the location of the initial true polarization values. The leftmost column shows the
results obtained when the covariance matrix is assumed to be diagonal and symmetric, (i.e., e =1 and p =0), as was usually done
in previous works on polarization data. The distribution along the ¢ axis is fully symmetric around 0, implying the absence of bias
on the polarization angle. When varying the ellipticity & from 1/2 to 2 (Cols. 2 and 3), we still observe symmetrical PDFs in this
configuration, but multiple peaks appear at low S/N. In the presence of correlation, i.e., p= — 1/2 and 1/2 (Cols. 4 and 5), the
maximum peak is now slightly shifted in p and ¢, with an asymmetric PDF around the initial y value.

In the usual canonical case, € =1 and p =0, the PDF remains strictly symmetric regardless of the value of the initial true polar-
ization angle y9. However, when changing the true polarization angle ¢, as shown in Fig. C.2, the PDF may become asymmetrical
once the ellipticity € # 1 or the correlation p # 0. This will induce a statistical bias in the measurement of the polarization angle ¢,
which could be positive or negative depending on the covariance matrix and the true value i, as discussed in Sect. 3.

Examples of 2D PDFs fop(p, ¥ | Iy, po, Yo, 2) for finite values of Iy/o; (1, 2, and 5), and various € and p situations, are shown
in Fig. C.3 for the case pg =py =0. The true polarization parameters are po=0.1 and ¢y =0°, and the polarization S/N is set to
Po/opc =1, so these plots may be directly compared to the third row of Fig. C.1. The effect of varying Io/o; on the overall shape of
the PDF seems rather small, but the position of the maximum likelihood in (p, ¢) is noticeably changed to lower values of p when
Ip/o; <2, while the mean likelihood appears to be increased.

n/2

n/4

= 0.00 g

pO/o-p,G =0.01

pO/O-p,G =0.5

PO/O-p,G =1

Po/O'p,G =5

L I L L
-4 L I L -n/4 L I L -4 L L -4 L I L -4 L ! L
0.00 005 010 0.15 0.20 000 005 010 015 0.20 0.00 005 010 015 020 0.00 005 010 015 020 0.00 0.05 0.10 0.15 0.20

Fig. C.1. Probability density functions, fop(p,¥ | po. ¥, Z,), with infinite S/N on intensity, computed for a given set of polarization parameters,
namely i/ =0° and py =0.1 (dashed lines). Each row corresponds to a specific level of the S/N py/0,c=0.01,0.5,1, and 5, from top to bottom.
Various configurations of the covariance matrix are shown (in the different columns). Furthest left is the standard case: no ellipticity and no
correlation. The next two columns show the impact of ellipticities € = 1/2 and 2. The last two columns deal with correlations p = —1/2 and +1/2.
White crosses indicate the mean likelihood estimates of the PDF (p, ¥). The contour levels are shown at 0.1, 1, 5, 10, 20, 50, 70, and 90% of the
maximum of the distribution.
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o = 3m/8
Yo = /4
o = m/8
Yo =0

W = —7/8

Fig. C.2. Probability density functions, fon(p, ¥ | po, Yo, 2,), plotted for various values of ¥ (rows), spanning from —z/8 to 37/8, and computed
for four configurations of the covariance matrix (columns), parameterized by € and p. The S/N on the intensity / is assumed to be infinite here. A
true value of polarization py = 0.1 has been chosen, and with S/N py/o,c = 1. White crosses indicate the mean likelihood estimates of the PDF

(P, ¥). The contour levels are provided at 0.1, 1, 5, 10, 20, 50, 70, and 90% of the maximum of the distribution.

Appendix D: General PDF of p and ¢

In the context of communication network science, Aalo et al. (2007) derived full expressions for the PDFs of envelope and phase
quantities in the general case. These expressions can be directly translated to express the PDF of the polarization fraction and angle,
pand y.

We can apply the rotation of the covariance introduced in Sect. 2.1 by an angle 6, given by Eq. (5), to remove the correlation
term between the Stokes parameters. We define the mean and the variance of the normalized Stokes parameters in this new frame by

H1 = pocos(Qgo —6), w2 = posinuyg — 6) (D.1)
and
ol = (0'%2 cos® § + a7, sin® @ + pogory sin 29) /I, o3 = (0'2Q sin” @ + 077, cos” 6 — pogory sin 29) /1. (D.2)

A135, page 14 of 17


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322271&pdf_id=12

L. Montier et al.: Polarization measurement analysis. 1.

Iy/oy=1 Iyjoy =2

2 2 nI2F

/4 e waE

e=1 > 0.00 > 0.00 1 > 000F

p=0 E 3

( er =1 ) n/4 4 -AE

§=0 2 ) 3
05

/2 /2 n2F

s w4k s

e=1/2 400 > 0.00 1 > 0.00F

=0 1 E

( £ =2 ) /4 /4 WAL

O=m 2 2 2k
05

2 2 2

/4 naE s

£=2 > 000 > 0.00 3 > 0.00F

p=0 1 E

( Eer =2 ) 4 4f -n/af

§=0 w2 2 2k :

05

2 2 ni2F

aE nl4E 4E

&= ] E

> 0.00 > 0.00 1 > 0.00F

o=-1/2 ] i

( cer ~ 1.73 ) -n/4 /4 -n/af

0=-n/4 2 2 -2k -

05

/2 /2 T2F

/4 nl4E n4E

£= > 0.00 > 0.00 E

p=1/2 j

( eor ~ 1.73 ) -naf niAE E

g=n/4 2 2 E
05

Fig. C.3. Probability density functions, fop(p,¥ |1y, po,¥o,Z), with finite S/N on intensity, Io/o; = 1, 2, and 5 (columns from left to right),
computed for a given set of polarization parameters, ¢y =0° and py=0.1 (dashed lines), and a S/N on the polarized intensity set to py/o, = 1.
Correlation coefficients py and py are set to zero. Various configurations of the covariance matrix are shown (rows). White crosses indicate

the mean likelihood estimates of the PDF (p, ). The contour levels are provided at 0.1, 1, 5, 10, 20, 50, 70, and 90% of the maximum of the
distribution. The polarization fraction is here defined over both the negative and positive ranges, due to the noise of the intensity.

The PDF of p is now written as

fp(p | pO’ 11009 zp) =

(D.3)

with 7, the nth-order modified Bessel function of the first kind. Here {o =1 and ¢, =2 for n#0, C} =n!/k!(n — k)! are binomial
coefficients, and ¢y is defined by

(D.4)

5. = 0 for k odd,
k=13 2(=1)%2 for k even.
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It should be noted that the above expression converges so fast that only a few terms of the infinite sum are required to obtain
sufficient accuracy. On the other hand, the PDF of the polarization angle is given by

1 2 U2 U
SoW 1 po. o, Zp,) = exp [—1— [& 0o pQo o]}

- p? 20.2) 20-%] (oo lents

=2 2

N T 1+ VrBWY) ex [8 (¢)] erfc|— BW) s (D.5)

nogoyAW) AW) AW) NAW)
where

2cos?2y  2sin®2 sin 2y cos 2
AW) = 5 vy 5 CRRPTELEL (p’ (D.6)
) oy 00y
1 2 U, in2y (U
BW) = —— [COS 4 (@ - P_O) Lo d (_0 - 'D_QO)} ; (D.7)
ll _ p2 (o) (o) oy oy oy (0N9)
and
erfc(z) = i fexp[—xz] dx (D.8)
Nz .
Z
is the complementary error function.
Appendix E: Impact of pq and py on € and p
The covariance matrix Z is positive definite, so may be written as a Cholesky product £ = LTL, with
Ly 0 O
L= [le Ly 0 ] (E.1)
Liz Lz L33

The six L;; are independent, unlike the six parameters of the covariance matrix, (o7, 0@, 0y, p, Po,Pu), or the parameters that we
use in this paper, (o7, 0¢, &, p, po, pv)- In the general case, these are given in terms of the L;; as (assuming Io = 1)

_ LisLy3 + Ly Lys e L% + L%3 + L§3
. 2or )+ 2+ 12) Lh+L5,
( nt 22)( 13t Lh T 33)

L12 L13
po=——"——, and py= . (E.2)
2 2 2 2 2
Vi + Ly Liy + Ly + L3,
When there is no correlation between I and the Q or U components, then Lj, = L;3 = 0, which leads to the following system:
L3+ 13
Ly Lo 23 33
p=p)=——"™DJ—-—; £€=g=—"7-——"- (E.3)

[L2o]

Lo 4 L3, + L3,

The ellipticity and the correlation coefficient are therefore modified by the presence of the correlation between / and (Q, U). A little
algebra leads to expressions for & and p as functions of &y, po, pg, and py, namely

1 - 2
&=\ 1_2? and  p=popu +po+/(1-p3) (1 -0}) (E4)
U

which are Egs. (26).

A135, page 16 of 17



L. Montier et al.: Polarization measurement analysis. I.

Appendix F: Derivation of conventional uncertainties

We describe here how the expressions for the conventional uncertainties of p and , which were introduced in Sect. 4.3, are obtained
from the derivatives of p and . We first note that we generally have

o% = E[(X - EIX]Y| = E[dx)7], (F.1)

where dX = X — E[X] is an infinitesimal element.
The conventional uncertainty of p can therefore be given by the expression o'i,c =F [(dp)z]. Using the expression for p we
obtain

(dp)? = ( QdQ + —dU + a—pdl)

ol
dp dp dp dp dp dp dp dp dp
D™+ 2—— +2——dQdl +2—— I, E2
( Q) (dQ)* +( ) (dU)? +( ) dn*+ c’)Qc’)UdeU 20 c’)Ide 30 31 dud (F2)
where the partial derivatives are
2 2
p_1_2 o0 o 1 2w v o CIC_ p 3

00 21 pr+02 pI¥ U 21 Jorr 02 pl* ol Iz T

This leads to the following expression for the conventional uncertainty:
1
o= —h E[Q2(dQ)2 + UX(AU)? + p*IP(dD)? + 2QUdQAU - 2Q1p*dQdI — 2U1p2dUd1]
Top

_ ﬁ (Q*E[(@ - ELQ1?]+ U*E (U - ELUN| + p*PE[U - EL1NY]

+2QUE[(Q - EIQ)(U - E[UD| - 2QIp*E[(Q - EIQDU ~ EIIN)| - 2UIp*E|(U - ELUNI - E11]))). (F4)
This finally leads to
0—129,0 = # (on_zg + Uo7, + p*lPoi + 2QUo gy — 2I10p* 01 — 2]Up20'1U). (F.5)

Similarly we can derive an expression for the non-conventional uncertainty of the polarization angle, i, given by O'i’c =E [(dlp)z].
Using the expression of i, we obtain the partial derivatives

1 1
o _1_ 0 4 W_ v__ (E6)
U  20*+U? 00 202+ U2
as well as an expression for the conventional ¢ uncertainty:
) W W Q 0dU - UdQ\? . 0*dU? + U2dQ? - 20UdQdU
g _— =
we =" \au 00 221 4p*
_ QZO'UU+U20'QQ—2QUO'QU‘ (F7)
4p4]4 :
Using Eq. (F.5) and assuming o = 09 = oy =0, we find
Q%2 + Uzo'%] +2QUcou
Pt = Q : . (F.8)
o,c
and replacing this expression in Eq. (F.7) finally leads to
oo QZO’%,+U20'2Q—2QUO'QU XO'p,C. (F9)
v Q% + U0, +2QUogy ~ 2p '

The above two expressions for the conventional estimates have been obtained in the small-error limit, and therefore they are formally
inapplicable to the large uncertainty regime. In Sect. 4 we discuss the extent to which they can provide reasonable proxies for the
errors, even at low S/N.
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ABSTRACT

With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, it becomes critical to
evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known
bias in the presence of measurement noise, as described in Part I of this series. In this paper, Part II of the series, we explore the
extent to which various estimators may correct the bias. Traditional frequentist estimators of the polarization fraction are compared
with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the
sensitivity of these estimators to the asymmetry of the covariance matrix, which may vary over large datasets. We present for the first
time a comparison among polarization angle estimators, and evaluate the statistical bias on the angle that appears when the covariance
matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty
estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval
method. From this pool of polarization fraction and angle estimators, we build recipes adapted to different uses: the best estimators to
build a mask, to compute large maps of the polarization fraction and angle, and to deal with low signal-to-noise data. More generally,
we show that the traditional estimators suffer from discontinuous distributions at a low signal-to-noise ratio, while the asymptotic
and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, which is compared with a
Gaussian distribution. In this regard, the new asymptotic method presents the best performance, while the Bayesian output distribution
is shown to be strongly asymmetric with a sharp cut at a low signal-to-noise ratio. Finally, we present an optimization of the estimator

derived from the Bayesian analysis using adapted priors.

Key words. polarization — methods: data analysis — methods: statistical

1. Introduction

The complexity of polarization measurement analysis has been
described by Serkowski (1958) when discussing the presence of
a systematic bias in optical measurements of linear polarization
from stars, and then by Wardle & Kronberg (1974) when ad-
dressing the same issue in the field of radio astronomy. The bias
of polarization measurements happens when one is interested in

the polarization intensity P = +/Q? + U? or in the 1polarization
fraction p = P/I and the polarization angle = 5 atan(U/Q)
where I, O, and U are the Stokes parameters, quantities that be-
come systematically biased in the presence of noise. Working
with the Stokes parameters Q and U as far as possible avoids
this kind of bias.

Once a physical modelling of p and ¢ is available and can
be translated into Q and U, a likelihood analysis can be per-
formed directly on the Stokes parameters. For the other cases,
where no modelling is available, Simmons & Stewart (1985)
proposed the first compilation and comparison of methods to
deal with the problem of getting unbiased polarization estimates
of the polarization fraction and angle, with their associated un-
certainties. Then Naghizadeh-Khouei & Clarke (1993) extended
the work of Simmons & Stewart (1985) to the characterization

* Appendices are available in electronic form at
http://www.aanda.org

Article published by EDP Sciences

of the polarization angle uncertainties, and Vaillancourt (2006)
have proposed a method for building confidence limits on polar-
ization fraction measurements.

More recently, Quinn (2012) has suggested using a Bayesian
approach to get better polarization estimates. In all these stud-
ies, the authors have made strong assumptions: negligible or no
noise on the intensity / and no correlation between the Q and U
components, which were also assumed to have equal noise prop-
erties. Montier et al. (2015, hereafter PMA 1) have quantified the
impact of the asymmetry and the correlation between the Q and
U noise components on the bias of the polarization fraction and
angle measurements. They have shown that the asymmetry of the
noise properties cannot be systematically neglected as is usually
done and that the uncertainty of the intensity may significantly
affect the polarization measurements in the low signal-to-noise
(S/N) regime.

In the context of the new generation of polarization data,
such as Planck! (Planck Collaboration I 2011), Blast-Pol (The
Balloon-borne Large Aperture Submillimeter Telescope for

' Planck (http://www.cosmos.esa.int/web/planck) is a project

of the European Space Agency (ESA) with instruments provided by
two scientific consortia funded by ESA member states (in particular the
lead countries France and Italy), with contributions from NASA (USA)
and telescope reflectors provided by a collaboration between ESA and
a scientific consortium led and funded by Denmark.
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Polarimetry, Fissel et al. 2010), PILOT (Bernard et al. 2007),
or ALMA (Pérez-Sanchez & Vlemmings 2013), which benefit
from much better control of the noise properties, it is essen-
tial to take the full covariance matrix into account when de-
riving the polarization measurement estimates. In recent works
no correction for the bias of the polarization fraction has been
applied (e.g., Dotson et al. 2010), or only high S/N data were
used for analysis (>3) to avoid these issues (e.g., Vaillancourt
& Matthews 2012). Two issues are immediately apparent. First,
this choice of the S/N threshold may not be relevant for all mea-
surements, and the asymmetry between the orthogonal Stokes
noise components could affect the threshold choice. Second, the
question remains of how to deal with low S/N data. Using sim-
ply the measurements of the polarization parameters (we call
them the “naive” ones) as estimators of the true values leads to
very poor performance, because they lack any information on
the noise power. Instead, we would like to perform some trans-
formation on the polarization parameters, in order to remove bias
and improve the variance.

This work is the second in a series on “Polarization mea-
surement analysis”. Its aim is to describe how to recover the
true polarization fraction p and polarization angle vy with their
associated uncertainties from a measurement (p, ¢), taking the
full covariance matrix ¥ into account. We compare the perfor-
mance of the various estimators that are available and study the
impact of the correlation and ellipticity of the covariance ma-
trix on these estimates. We stress that we adopt a frequentist
approach to investigate the properties of these estimators, even
when dealing with the method inspired by the Bayesian analy-
sis. This means that the estimators are defined as single-value
estimates, instead of considering the probability density func-
tion (PDF) as the proper estimate, as is usually done in Bayesian
methods. The performance of these estimators will be evaluated
using three main criteria: the minimum bias, the smallest risk
function, and the shape of the distribution of the output esti-
mates. The choice of the most appropriate estimator may vary
with the application at hand, and a compromise among them
may be chosen to achieve good overall performance. Throughout
this work we make the following two assumptions: i) circular
polarization is assumed to be negligible; and ii) the noise on
Stokes parameters is assumed to be Gaussian. We also define
four regimes of the covariance matrix to quantify its asymme-
try in terms of effective ellipticity (e.¢) as described in PMA I:
the extreme (1 < g < 2), the low (1 < g < 1.1), the tiny
(1 < &ef < 1.01), and the canonical (e.¢ = 1) regimes.

The paper is organized as follows. We first review in Sect. 2
the expression and the limitations of the polarization estimators,
which are extended to take the full covariance matrix into ac-
count. In Sect. 3, we discuss the meaning of the polarization un-
certainties and present the different uncertainty estimators. We
then compare the performance of the estimators of the polariza-
tion fraction in Sect. 4 and of the polarization angle in Sect. 5.
In Sect. 6, we discuss some aspects of the problem when the to-
tal intensity / is not perfectly known. We conclude with general
recipes in Sect. 7.

A136, page 2 of 20

2. Polarization estimators

Early work on polarization estimators was based on the Rice
(1945) distribution, which provides the probability of finding
a measurement p for a given true value py and the noise es-
timate o, of the Q and U Stokes parameters. The noise val-
ues of the Stokes parameters were assumed to be equal (o, =
oolly = oyl/lp), and the total intensity was assumed to be per-
fectly known, I = Ij. Since we would like to include the full co-
variance matrix, we used the generalized expression of the PDF
from PMA I, which provides the probability of getting the mea-
surements (I, p, ), given the true values (Iy, po, ¥o) and the
covariance matrix . Following the notations of PMA 1, the ex-
pression of the PDF in 3D, including the intensity terms, denoted
F, p, W, po, Yo, %), is given by Eq. (1), where Det(Z) = o,
and the PDF in 2D, fop(p, ¥llo, po, Yo, Z,), by Eq. (2) when the
intensity Iy is assumed to be perfectly known. We introduced
the covariance matrix reduced in 2D,

2
=i(0' O'QU) _ 0L [s 0 ] 3)
P \oou o =2 \p 1/e)

where € = og/oy is the ellipticity and p = gy /o ooy is the
correlation between the O and U noise components, leading to
an effective ellipticity given by

L +&2+ (g2 = 1) +4p2e?

Eeff = 4)
1+&2— /(g2 - 1) +4p2&?
With these notations, we have Det(Z,) = o-in and
o2 =02
2 _ "0 P
O-P»G - 12 e ’ (5)

which represents the equivalent radius of a circular Gaussian dis-
tribution with the same integrated area as the elliptical one. We
also define o, = o¢/ly = oy/lp when g = 1. Finally the PDFs
of p and ¥, f,, and f, are obtained by marginalization of fop
over ¥ and p, respectively. The expressions for the 1D PDFs f,
and f, depend on the full set of initial parameters (/o, po, o) in
the general case, unlike the case under the canonical simplifica-
tions (see Appendix C of PMA I for fully developed analytical
expressions).

We describe below the various estimators of the polarization
fraction and angle listed in Table 1. We stress that most of the
expressions derived in this work have been obtained when re-
stricting the analysis in the 2D case, assuming furthermore that
the true intensity I is perfectly known, except for the Bayesian
estimator where we present a 3D development (see Sect. 6).

2.1. Maximum likelihood estimators

The maximum likelihood (ML) estimators are defined as the val-
ues of po and ¥ that maximize the PDF calculated at the polar-
ization measurements p and . When computed using the 2D
PDF fop to fit po and ¢ simultaneously, this estimator gives
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Table 1. List of the acronyms of the estimators used in this work.

Acronym  Description Parameters
ML Maximum likelihood ply
MP Most probable in 1D ply
MP2 Most probable in 2D p &Y
AS Asymptotic p
MAS Modified asymptotic p
MAP Maximum a posteriori ply
MAP2 Maximum a posteriori in 2D p &Y
MB Mean posterior Bayesian I &p&y

Notes. The parameters to which each estimator applies, independently
(/) or simultaneously (&), are given in the last column.

back the measurements, regardless of the bias and the covari-
ance matrix, and is inefficient at correcting the bias of the data.
After marginalization of the PDF fop over ¢, the 1D ML
estimator of pg, pmL, is now defined by
e (p1 o, 3 N (©)
P

0=PML

8

The expression of f, is independent of the measurement ¥, but
it still theoretically depends on the true value i, which is un-
known. In the canonical case (e.¢ = 1), ¥ disappears from the
expression, but it must be considered as a nuisance parameter in
the general case. One way to proceed in such a case is to com-
pute the mean of the solutions pyy for ¢ varying in the range
—n/2to /2. As already stressed by Simmons & Stewart (1985),
this estimator yields a zero estimate below a certain threshold of
the measurement p, which implies a strong discontinuity in the
resulting distribution of this pg estimator. Nevertheless, unlike
the 2D ML estimators, the p ML estimator does not give back
the initial measurements, and is often used to build polarization
estimates.

Similarly, the 1D ML estimator of W, Y, is given after
marginalization of f>p over p by

Ay
= 500 Wlpovo, 0 @)
As mentioned for the ML estimator pyy, the unknown parameter
po in the above expression has to be considered as a nuisance pa-
rameter when solving Eq. (7). We stress that because the canon-
ical simplifications have always been assumed in the literature,
bias on the ¥y measurements has not been previously considered,
and the . estimator has not yet been used and qualified to
correct this kind of bias. This analysis is done in Sect. 5.

2.2. Most probable estimators

The most probable (MP) estimators of po and ¥ are the values
for which the PDF f,p reaches its maximum at the measurement
values (p, ¥). The MP estimators ensure that the measurement
values (p, ) are the most probable values of the PDF computed
for this choice of py and yy; i.e., they take the maximum prob-
ability among all possible measurements with this set of pg and
Yo. As a comparison, the ML estimators ensure that the measure-
ment values (p, ) take the maximum probability for this choice
of po and ¢y compared to the probability of the same measure-
ment values (p, ¢) for all other possible sets of py and .

The 2D MP estimators (MP2), pmp2 and I&Mpz, are defined
as the values of py and ¢ simultaneously satisfying the two fol-
lowing relations:
0= f2D (P ¢|P0’ lﬁo» )' po = IAZMP2 (8)

Yo = Y2

and

_0fo

0=

(2919000, o = s - )
wo = e

These relations can be solved using the fully developed expres-

sion of fop, including the terms of the inverse matrix Z;l, as

provided in Appendix A. When canonical simplifications are as-
sumed, this yields

dvp2 = VU,

p—of,/p for p > o)
0 for p < o),

DPmp2 (10)
as found in Wang et al. (1997) and Quinn (2012). We observe
that the MP2 estimate of the polarization fraction is systemati-
cally lower than the measurements, so that this estimator tends
to over-correct p, as shown in Sect. 4.

After marginalization over p or ¥, the 1D MP estimators,
Pwmp and Yryp, are defined independently by

and
8{5 (‘/’ Po 0. 2 )|¢0=‘ZMP. N

The 1D and 2D estimators are not expected to provide the same
estimates. Under the canonical assumptions, the MP estimator
of p is commonly known as the Wardle & Kronberg (1974)
estimator.

As mentioned earlier, the MP estimator yields a zero esti-
mate below a certain threshold of p (Simmons & Stewart 1985),
which implies a strong discontinuity in the resulting distribution
of these estimators for low S/N measurements.

2.3. Asymptotic estimator

The asymptotic estimator (AS) of the polarization fraction p is
usually defined in the canonical case by

ﬁAs={ JprP-ok forp>o,

0 for p < o).

13)

The output distribution of the AS estimator appears as the
asymptotic limit of the Rice (1945) distribution when p /o, tends
to oo, just as for the ML and MP estimators, and given by

2
PDF(ﬂ) 5 N[ (@) +1, 1],
Tp Tp

where N(u, o) denotes the Gaussian distribution of mean y and
variance 0. As with the previously presented estimators, this
one suffers from a strong discontinuity at pas = 0.

In the general case, when the canonical simplification is not
assumed, it has been shown by Plaszczynski et al. (2014, here-
after P14) that the expression of the asymptotic estimator can

be extended to a general expression by changing the term ¢ in

P
Eq. (13) into a “noise-bias” parameter b> defined by

(14)

oy 2 cos* Qo — 0) + 0"2 sin?(2u — 0)
b* = (15)
2 '
0
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Fig. 1. Distributions of p estimates obtained with the standard estima-
tors: naive (black), ML (blue), MP (light green), MP2 (green), and AS
(red). We assume the covariance matrix to be canonical, and a S/N of
po/o, = 1. Based on 100 000 Monte-Carlo simulations with an initial
value of py = 1%.

where 6 represents the position angle of the iso-probability bi-
variate distribution, and /7, 0"Q2 the rotated variances

1 2po g0
0 = —atan[%), (16)
2 !
o2 = 0% cos’ 0+ o2 sin® 0 + popoy sin 260 17)
0 0 U PIQo0U >
o} = 0'2Q sin® @ + 0%, cos” 6 — po oy sin 26, (18)

and ¥ is the true polarization angle, which can be approximated
asymptotically by the naive measurement ¢ or, even better, by
the estimate @ML of Sect. 2.1. It has been shown that b2 ensures
the minimal bias of pas.

2.4. Discontinuous estimators

The estimators of p introduced above (ML, MP, and AS) ex-
hibit a common feature: below some cutoft value the estimator
yields exactly zero. This means that the estimator distribution
is discontinuous and is a mixture of a discrete one (at p = 0)
and a continuous one (for p > 0). This type of distribution is
illustrated in Fig. 1 for a S/N of pg/o, = 1 and a canonical co-
variance matrix. The distribution of the naive measurements is
built using 100 000 Monte-Carlo simulations, starting from true
polarization parameters py and ¢. The other three distributions
of p are obtained after applying the ML, MP and AS estimators.
A non-negligible fraction of the measurements provide null es-
timates of p. As shown in Fig. 2, this fraction of null estimates
reaches 40% at low S/N with the MP and AS estimators, and
more than 50% with the ML estimator for S/N < 1. It converges
to 0% for S/N > 4.

If taken into account as a reliable estimate of p, null esti-
mates will somewhat artificially lower the statistical bias of the p
estimates compared to the true value py, as explained in Sect. 4.
A null value of these estimators should be understood as an in-
dicator of the low S/N of this measurement, which actually has
to be included in any further analysis as an upper limit value. In
practice, the user seldom has various realizations at hand. Using
these estimators then leads to a result with upper limits mixed
with non-zero estimates in the analysis. Such complications may
be especially hard to handle when studying polarized maps of the
interstellar medium. On the other hand, it would be disastrous to
omit those estimates in any statistical analysis, since weakly po-
larized points would be systematically rejected. To avoid such
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Fig. 2. Statistical fraction of null estimates of p provided by the ML,
MP, MP2, and AS estimators applied to 100 000 Monte-Carlo measure-
ments, as a function of the S/N in the canonical case.

complications, we explore below other estimators that avoid this
issue and lead to continuous distributions. This is especially im-
portant in the range of S/N between 2 and 3, where the discon-
tinuous estimators still yield up to 20% of null estimates.

2.5. Modified asymptotic estimator

A novel asymptotic estimator has been introduced by P14 to
eliminate the discontinuous distribution of the standard estima-
tors while still keeping the asymptotic properties. It has been
derived from the first-order development of the asymptotic es-
timator, which has been modified to ensure positivity, smooth-
ness, and asymptotical convergence at high S/N. The modified
asymptotic (MAS) estimator is defined as
_ o P/’
Pmas =P—b2'167,
2p
where the “noise-bias” b* is given by Eq. (15) and computed
using a polarization angle assessed from each sample using the
asymptotic estimator .
P14 also provides a sample estimate of the variance of the
estimator that is shown to represent asymptotically the absolute
risk function (defined in Sect. 3.1) of the estimator:
) oG cos* 2y - 6) + o sin’(2y — 6)

o2 = .
P.MAS Ié

This estimator focuses on getting a “good” distribution, which

transforms smoothly from a Rayleigh-like to a Gaussian one, the
latter being reached in the canonical case for a S/N of about 2.

19)

(20)

2.6. Bayesian estimators

The PDFs introduced in Sect. 2 provide the probability of ob-
serving a set of polarization measurements (I, p, ) given the
true polarization parameters (/y, po, ¥o) and the covariance ma-
trix 2. Because we are interested in the opposite, i.e., getting
an estimate of the true polarization parameters given a measure-
ment and knowledge of the noise properties, we use the Bayes
theorem to build the posterior distribution. The posterior PDF B
is given in the 3D case by

B(IO’PO’ ';DO | I’P» lp» Z) =
f(I» P> ';b | 107 Po, ';DO» Z) ) K(107 Po, ';DO)

© ] /2 ’ ’ ’ ! ’ ’ ’ ’ I’
W £ paw I, ply v, B kU, pl i) durydpidly
@1
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Det(z-1) I'=1Io ! I'-1Io
B(ly, po, Yo ll, p, ¥, %) o exp |—= | pI cos(2y¥) — po Iy cos(2yry) ! pl cos(2y) — po Ly cosyo) ||, (22)
d p 1 sin(2y) — po Io sin(2yo) p I sin2y) — po Iy sin(2y)
1 L[ p cosu) = pocosi) | 51 [ p cosu) = py cos(2u)
Bop(po, o | p, . 2p) — exp [—5 [ D sin(2) — PE sin(Zz//(;)) ] s [ D sin(2) — PE sin(Zz//(;)) ] . (24)

where k(1y, po, o) is the prior distribution, which represents the
a priori knowledge of the true polarization parameters and has to
be non-negative everywhere. When no a priori knowledge is pro-
vided, we have to properly define a non-informative prior, which
encodes the ignorance of the prior. A class of non-informative
priors is given by the Jeffreys’ prior (Jeffrey 1939) where the
ignorance is defined under symmetry transformations that leave
the prior invariant. As discussed by Quinn (2012) for the 2D
case, this kind of prior can be built as a uniform prior in carte-
sian space (Qy, Up), but it will lead to an under-sampling of the
low values of p in polar space (po, ¥o). However, for the last
reason, we prefer a uniform prior in polar space, which ensures
uniform sampling even for low values of py, but which can no
longer be considered as a non-informative prior. While py and v
are only defined on a finite range ([0, 1] and [-7/2, 7/2), respec-
tively), the intensity I may be infinite in theory, which leads to
a problem when defining the ignorance prior. In practice, an ap-
proximation of the ignorance prior for I, will be chosen as a top
hat centred on the measurement / and chosen to be wide enough
to cover the wings of the distribution until it becomes negligi-
ble. Such uniform priors lead to the expression of B given in
Eq. (22), where the normalization factor has been omitted. We
emphasize that the definition of the ignorance prior introduced
above becomes data-dependent, which does not strictly follow
the Bayesian approach. Furthermore, the question of the defini-
tion range of the prior and the introduction of non-flat priors are
discussed in Sect. 4.3 in the context of comparing the perfor-
mance of the estimators inspired by the Bayesian approach.

Similarly, the posterior PDF in 2D (i.e., when the total inten-
sity is perfectly known, I = Ij)) is defined by

BZD(pO’ 1100 | p- 110’ zp) =

(P, po,vo,2p) - k(po, ¥o)
1 +7/2

[ Ao, vlph. vy, £p) k(py, vy durgdp)

0 -n/2

(23)

The analytical expressions of the posterior PDF Byp with a
flat prior is given in Eq. (24), where the normalization factors
have been omitted, and the intensity has been assumed to be per-
fectly known. Illustrations of this posterior PDF are presented
in Appendix B. We also introduce B, and By, the Bayesian
posterior PDFs of p and ¢ in 1D, respectively, and defined as
the marginalization of B,p over ¢ and p, respectively. We use
the Bayesian posterior PDFs to build two frequentist estima-
tors: the MAP and the MB.

The MAP2 and MAP estimators in 2D and 1D, respectively,
are simply defined as the (po, Y¥o) values corresponding to the
maximum of the posterior PDF, Byp, and B, and By, respec-
tively. We recall that these estimators match the ML estimators
of Sect. 2 in one and two dimensions exactly, respectively, when
a uniform prior is assumed. As a result, the MAP2 estimators
yield back the polarization measurements, whereas the MAP es-
timators provide a simple way to compute the ML estimates.

The mean Bayesian posterior (MB) estimators are defined as
the first-order moments of the posterior PDF:

2 pl

ﬁMBEf fPoan(Po,llfo|P,l//,zp)dpodl//0 (25)
2 Jo

and

A yin/2 ol

l!/MBEf fl!/oan(Po,lllo|P,l//,zp)dpodkbo~ (26)
w-rj2 Jo

In the definition of @MB, the integral over y is performed over a
range centred on the measurement ¢. This has to be done to take
the circularity of the posterior PDF over the i dimension into
account (see also Quinn 2012, when dealing with the circularity
of the polarization angle). We note that Bop(po, Yo | p, ¥, 2),) =
BZD(p()’ ‘/’0 +7 | P l//7 ZP)

The frequentist estimators inspired by a Bayesian ap-
proach, pyp and @MB, introduced above in the 2D case can
be easily extended to the 3D case by integrating the PDF
By, po,¥oll, p,¥, %) of Eq. (21) over the I, p, and ¢ dimen-
sions. This is extremely powerful when the uncertainty of the
intensity / has to be taken into account in the estimate of the
polarization parameters, which is highly recommended in some
circumstances, such as a low S/N on 7 (<5) or the presence of
an unpolarized component on the line of sight (see Sect. 6 and
PMA 1 for more details).

3. Uncertainties

We introduce here the various estimates of the uncertainty as-
sociated with a polarization measurement, making a clear dis-
tinction between the notions of variance and risk function. We
emphasize the difference between two approaches: one based on
the posterior uncertainties and the second based on confidence
intervals.

3.1. Variance and risk function

Itis important not to confuse the variance (noted V) of an estima-
tor with its absolute risk function (noted R). For any distribution
of the random variable X the definitions are

V =
R

E[(X - E[X])’] and
E[(X - X0y,

27)
(28)

where E[X] is the expectation of the random variable X and X is
the true value. Introducing the absolute bias, B, in E[X] = Xo+B
and expanding both relations, the link between the variance and
the absolute risk function is simply
V=R-B. (29)
Therefore, for a constant absolute risk function, the variance
decreases with the absolute bias, and both are equal when the
estimator is unbiased. The variance does not require knowing
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the true value of the random variable, which makes it useful to
provide an uncertainty estimate, but it has to be used extremely
carefully in the presence of bias. In such cases, the variance will
always underestimate the uncertainty.

Furthermore, it is known that the variance is not appropri-
ate for providing uncertainties with non-Gaussian distributions,
which is the case for the polarization fraction and angle. In such
circumstances, confidence intervals (see Sect. 3.3) are the pre-
ferred method for obtaining robust uncertainties. The variance,
however, is often used as a proxy of the uncertainty in the high
regime of the S/N. In Sects. 4.5 and 5.3, we detail the conditions
under which this can still be applied.

3.2. Posterior uncertainties

One of the main benefits of the Bayesian approach is to provide
simple estimates of the uncertainties associated with the polar-
ization estimates. One option is to build credible intervals around
the MAP estimates as it has been discussed by Vaillancourt
(2006) or also Quinn (2012), and the other option is to use the
variance of the PDF.

Given a polarization measurement (p, ) and the posterior
PDF Bp(po, Yolp, ¥, 2,), the lower and upper limits of the 1%
credible intervals are defined as the lower and upper limits of pg
and ) for the iso-probability region Q(4, p, ) over which the
integral of B equals A%, so that

1
ff Ban(po, Yo | p, ¥, Z ) dpodipo = 00
QA.p.y)

These intervals, [pX b, Prgapo] A0 (WA oy, Yaraps > estimated

from the 2D expression of Byp, are defined around the MAP2 es-
timates pmap2 and @MApz, which are equal to the measurements
(p, ¥). It has to be noticed that, in general, 2D intervals are not
uniquely defined (see Eq. (32) of PMA I).

A similar definition can be given in the 1D case, which leads
to different results. The lower and upper limits, pi3%, and pyr o,
around pyap are defined as

(30)

A s )d A 31
flow p(Polp.Zp)dpo = 156 (€2Y)

Pniap

with the constraint that the posterior probability function is iden-

tical for 3%, and py;,p. Similarly, the lower and upper limits,

low up :
and ¢, p» around Yvap are given by

MAP

- 32
low 100 ©2)

MAP

Uiap
f By (o |, Z,) drg =
[

We recall that this integral has to be computed around the mea-
surement value lf/MAp to take the circularity of the posterior PDF
with the polarization angle into account. The credible intervals
built in 1D or 2D are not supposed to be identical, because
(Pmap2, ¥map2) and (Pumap, Ymap) are not equal in the general
case.

The second definition of the uncertainty comes from the sec-
ond moment of the 1D posterior probability density functions B,
and By, as follows:

1
o 129,MB = f (Po — Pme)*By(po| p. ) dpo (33)
0
and
/2 .
O-i,MB = f Wo — Yms)* ByWo | ¢, Z,) digo. (34)
Y—n/2
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The operation of subtraction between the two polarization angles
must be done with care, restricting the maximum distance to /2.
Atvery low S/N, i.e., an almost flat uniform PDF, the uncertainty

reaches the upper limit oy mp < 7/ V12rad = 51296. We stress
that these 1o estimates may not be associated with the usual
68% confidence intervals of the normal distribution, because of
the asymmetric shape of the posterior distribution and because
of the circularity of the angular variable.

3.3. Confidence intervals

So far we have considered point estimation of the true py value
which is somewhat tricky in the low S/N regime because of the
non-Gaussian nature of the estimator distribution. A different ap-
proach that takes the entire shape of the distribution into account
is to build confidence regions (or intervals), which allows bounds
on the true value to be obtained at some significance level given
an estimator value.

Simmons & Stewart (1985) have built the so-called Neyman
“confidence belt” for the naive estimator in the canonical case.
PMA 1 proposed the construction of 2D (py, ¥g) intervals, for
the general covariance matrix case. The classical construction
suffers from a standard problem: at very low S/N the confidence
interval lies entirely in the unphysical p < 0 region, and both
previous studies provide over-conservative regions.

P14 has implemented the Feldman-Cousins prescription
(Feldman & Cousins 1998), which is based on using a likelihood
ratio criterium in the Neyman construction. This allows building
intervals that always lie in the physical region without ever being
conservative. They provided these intervals for the MAS estima-
tor, including analytical approximations to the upper and lower
limits for 68%, 95%, and 99.5% significance levels.

4. p estimator performance

We investigate in this section the capability of providing polar-
ization fraction estimates with low bias using the seven p estima-
tors introduced in the previous sections: the naive measurement
p, the ML, the MP and MP2, the AS, the MAS, and the MB esti-
mators. Their performance is first quantified in terms of relative
bias and the risk function of the resulting estimates.

4.1. Methodology

Given true polarization parameters (po, () and a covariance ma-
trix %,, we build a sample of one million simulated measure-
ments (p, ¥) by adding noise on the true Stokes parameters us-
ing the covariance matrix. We define the relative bias and risk
function on p as

By — (P - po)*
—(p) Po and Risk, = —< > >,
O'p,G O-p,G

Bias, = (35)

where p is the polarization fraction estimate computed on the
simulated measurements p, po is the true polarization fraction,
() denotes the average computed over the simulated sample, and
0,6 1s the estimate of the noise of the polarization fraction. The
choice of o, ¢ to scale the absolute bias and risk function, as a
proxy of the p uncertainty, is motivated by the fact that it only
depends on the effective ellipticity and not on . This choice
can lead to a relative risk function falling below 1 at low S/N,
because 0’in > V (variance, see Eq. (27)) in this regime. The ac-
curacy of the p estimators is also quantified regarding the shape
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of their output distributions. We use the Jarque-Bera estimator
(Jarque & Bera 1980) as a test of normality of the output distri-
bution, and defined by

n ,U2 :
JB:—(—§+(‘L‘2‘—3J /4],
6lmy \u3

where n is the number of samples and y; is the naive estimate of
the ith central moment of the distribution. This test is based on
the joint hypothesis of the skewness and the excess kurtosis be-
ing zero simultaneously. A value /B = 0 means a perfect agree-
ment with normality to fourth order, but does not prevent depar-
ture from normality at higher orders. This JB estimator tends
to a x? test with two degrees of freedom when n becomes large
enough. The JB therefore has to satisfy the condition JB < y?
once a significance level « is chosen. For a significance level
a = 5% and 1%, we get the conditions JB < 5.99 and JB < 9.21,
respectively.

(36)

4.2. Canonical case

We first assume the canonical simplification of the covariance
matrix (e.¢ = 1). The relative Bias, and Risk, quantities are
shown in Fig. 3 for the seven p estimators and estimated us-
ing 100000 Monte-Carlo simulations. We recall that the dis-
continuous estimators have an output distribution presenting a
strong peak at zero, which artificially lowers the statistical rel-
ative Bias, when simply including null values instead of using
upper limits, as discussed in Sect. 2.4. Actually, these estimators
show the lowest relative biases (top panel of Fig. 3) compared
to the MAS and MB estimators. The ML and MP2 estimators
thus seem to statistically over-correct the data, below S/N = 3.
Consequently, the ML, MP, and AS p estimators have to be used
with extreme care to deal with null estimates. We suggest focus-
ing on the two continuous estimators, MAS and MB.

MAS provides the better performances in terms of relative
bias over the whole range of S/N, while MB appears less and
less efficient at correcting the bias when the S/N tends to zero.
At higher S/N (>2), MB tends to slightly over-correct with a
small negative relative bias (2% of o) up to S/N ~ 5, while
MAS converges quickly to a null relative bias for S/N > 3.

The MB estimator clearly minimizes the risk function in the
range 0.7 < §/N < 3.2 (see middle panel of Fig. 3), as expected
for this kind of posterior estimator. At higher S/N (>3.2), both
MAS and MB have roughly the same behaviour, even if the risk
function associated to MAS appears slightly lower.

The resulting pyp distribution is highly asymmetric at low
S/N (see top panel of Fig. 4), with a sharp cutoff at 0.8c .
Moreover, we note that the output pyp distribution depends not
only on the S/N po/o,, but also on the value of the true po-
larization fraction py. We report two cases, pp = 1% and 50%
in Fig. 4. This comes from the prior of the Bayesian method,
which bounds the estimate py between 0 and 1. As a conse-
quence, the normality of the Bayesian distribution is extremely
poor, as pointed out in the bottom panel of Fig. 3, where we show
that the JB test of the MB estimator is larger than 9.21 (con-
sistent with a Xé.m test) over the whole range of S/N explored
here (up to S/N ~ 5). In contrast, the resulting pypas distribution
of Fig. 4 looks much better, mimicking the Rayleigh distribu-
tion for low S/N and going neatly to the Gaussian regime, as
pointed out by P14. The JB of the MAS estimator is the lowest
for S/N > 3 (see bottom panel of Fig. 3), illustrating the consis-
tency between the MAS distribution and the normal distribution.

1055
10";
10’;

JB

10°L
10'E
100k

P/S,

Fig. 3. Comparison of the average relative bias (top), risk function (mid-
dle) and Jarque-Bera test (bottom) of the pure measurements (naive,
black), ML (dashed blue), MP (dashed light green), MP2 (dashed
green), AS (dashed red), MAS (orange) and MB (pink) p estimators
in the canonical case, as a function of the S/N py/o,. The dashed lines
stand for the discontinuous estimators presenting a peak of their output
distribution at p = 0. Based on 100 000 Monte Carlo simulations. The
limit JB = 2 for @ = 1% is shown in dot-dot-dot-dashed line.

All distributions, naive, MAS, and MB, converge to a Gaussian
distribution at higher S/N.

4.3. Impact of the Bayesian prior

The choice of the prior is crucial in the Bayesian approach, and
we have seen how it is hard to define a non-informative prior
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Fig. 4. Output distributions of the naive (black), MAS (orange), and the
MB (pink) p estimators applied to 100000 Monte-Carlo simulations
using a covariance matrix in the canonical case (e.¢ = 1), for three
levels of the S/N po/o, = 1,2, and 5 (from top to bottom). In the case of
the MB estimator, we show two setups of py = 1% and 50% to illustrate
the dependence of the output distribution on the py value, due to the
prior used in the Bayesian approach (pys € [0, 1] so that pms/po €
[0, 1/po]). The other estimators are not sensitive to the true value py.
The MB and MAS curves overlap in the bottom panel.

in Sect. 2.6. The MB estimator studied up to now assumes a
flat prior in pg between 0 and 1, which is already an informa-
tive prior (see Quinn 2012). In practice when dealing with as-
trophysical data, we can bound the expected true values of the
polarization fraction between much tighter limits. We know, for
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Fig. 5. Impact of the flat prior interval upper limit (see Eq. (37)) on the
relative Bias, performance of the MB estimator.

example, that the polarization fraction of the synchrotron signal
peaks at ~75%, but never reaches this maximum due to line of
sight averaging. The maximum polarization fraction of the dust
thermal emission is still a debated issue, but is unlikely to be
greater than 20% to 30% (Benoit et al. 2004). Appropriate priors
can then be introduced to take this a priori physical knowledge
into account in the MB estimator.

We have already observed in Sect. 4.2 how the output distri-
bution of the pyp estimates is affected by the value of the true
po (1% or 50%) due to the upper limit (py < 1) of the prior, see
Fig. 4. We explore here a family of simple priors defined by

0 otherwise, (37

p)) = { 1/(kpo) for p), € [0, kpo]
where we adjust the upper limit of the prior as a function of the
expected true value. We performed Monte Carlo simulations in
the canonical case by setting the true value at pg = 1% and vary-
ing the upper limit of the prior (k = 2,3,5, 10, and 100). The
statistical relative Bias, of the MB estimators associated with
each version of the priors is shown in Fig. 5. The lower the up-
per limit, the lower the relative Bias,, as expected. However, the
upper limit of the prior has to be very constraining (k < 3) to ob-
serve a decrease in the relative bias in the range of S/N between
1.5 and 3. This requires very good a priori knowledge. Using
more relaxed priors (k > 5) will significantly not improve the
performances of the MB estimator at S/N > 1.

When dealing with maps of polarized data, an interesting ap-
proach would be to start by estimating the histogram of p values
in the map and use it as a prior in our MB estimators, even if this
moves away from a strictly Bayesian approach again by intro-
ducing a data-dependent prior. As a first guess, the prior can be
set to the histogram of the naive estimates of p, but a more so-
phisticated prior would be an histogram of p deconvolved from
the errors, using a maximum entropy method, for example.

We illustrate the performance of the MB estimator with this
kind of prior in Figs. 6 and 7. We start with a sample of 10 000 in-
dependent true values (po,;) ranging between 0% and 20% polar-
ization fractions, with a distribution shown in Fig. 7 on which
a random realization of the noise is added with the same noise
level over the whole sample, leading to varying S/Ns through
the sample. We explore two extreme cases of the Bayesian prior,
corresponding to i) an idealistic perfect knowledge of the input
distribution and ii) its first guess provided by the naive estimates.
The prior is therefore chosen as the input distribution of the true
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Fig. 6. Illustration of the improvement in the MB estimator perfor-
mances when using evolved priors. Starting from an input distribution
of 10000 simulated true values (po,), shown in Fig. 7, and the statisti-
cal relative bias is shown for four estimators: naive, MAS, and MB with
three different priors.

Po.; values and the output distribution of the naive estimates. We
compare the performance of these two new versions of the MB
estimators with the naive, MAS, and flat prior MB estimators, in
terms of relative bias in Fig. 6.

We stress that the relative bias values are not defined as pre-
viously done in Sect. 4.1, but refer now to the mean of the dif-
ference between each sample of true value po; and its associ-
ated estimate p;. The pink shaded region provides the domain
of the possible improvement of the MB estimators, by setting
an appropriate prior as close as possible to the true distribution.
The improvements may seem spectacular, leading to a statistical
relative bias close to zero at all S/Ns in the best configuration
(dashed line). Caution is warranted, however, when looking at
the output distributions associated with these new MB estima-
tors in Fig. 7, shown for three levels of the noise chosen so that
the mean S/N is po/o ¢ = 1,2 and 3. At low S/N (=1), the out-
put distribution of the MB estimator with a perfect prior (dashed
line) is extremely peaked around the mean value of the sam-
ple po, but does not match the input distribution at all. Even at
higher S/N (2-3), the three MB output distributions suffer from
the same feature already mentioned in Sect. 4.2, a sharp cutoff at
low values of p. Using a prior that is too constraining will yield
dramatic cuts of the extremes values of the input distribution.
By contrast, the naive prior is quite effective in that it allows the
MB estimator to recover the upper limit of the input distribution
reasonably well at a S/N % 2, while the other estimators fail to
do so at such low S/N.

The performance of the MB estimator with an evolved prior
will also strongly depend on the initial true distribution of the po-
larization fraction. For example we duplicated the analysis made
above with a different initial distribution (py ;) centred on 20% of
polarization fraction instead of 10% (see Fig. 8). In this configu-
ration, the output distributions of the Bayesian estimators are not
as much affected by the cut-off at low p as observed in Fig. 7.
The MB estimator with the naive prior appears extremely effec-
tive, even at low S/N (~2).

4.4. Robustness to the covariance matrix

In PMA I we have extensively discussed the impact of the asym-
metry of the covariance matrix on the measurements of the polar-
ization fraction. In particular, we stressed that once the effective
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Fig.7. Output distributions of the p estimates starting from a distribu-
tion of 10 000 simulated independent true values (p,;) centred on 10%
of polarization fraction (grey shaded region) shown at three levels of
noise characterized by the mean S/N (py;)/0,c = 1,2, and 3 (top, mid-
dle, and bottom, respectively). The naive (black) and MAS (orange) out-
put distributions are compared to the MB output distributions obtained
with three different priors: flat prior between 0 and 1 (solid pink), to the
naive output distribution (dotted pink), and to the true input distribution
(dashed pink).

ellipticity departs from the canonical case, the bias on the polar-
ization fraction depends on the true polarization angle ¥, which
remains unknown. We would like to explore in this section how
the performance of the various p estimators are sensitive to the
effective ellipticity of the covariance matrix.
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Fig. 8. Same as Fig. 7 with a different initial distribution (p,;) centred
on a 20% polarization fraction.

We illustrate the dependence of the p estimators on the true
polarization angle ¢ in Fig. 9. Given true polarization param-
eters (po = 0.1 and ¥ ranging between —x/2 and 7/2), a co-
variance matrix characterized by e, = 2 and 6 = 0 (left-hand
panel), and a S/N po/o,c = 1, we first set the polarization
measurements (p, ¥) to the maximum of the PDF f>p (left-hand
panel). We apply then the six estimators on these measurements
to get the p estimates for each o between —n/2 and /2. With
this particular setting, the MP2 (green) estimator gives back the
true polarization fraction py whatever the polarization angle ¢,
by definition of this estimator and the choice of the measure-
ment in this example. On the contrary, the MP (light green) and
the ML (blue) estimators are extremely sensitive to the true po-
larization angle ¢, yielding estimates spanning a large range
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between 0 and 2.2pg, while the AS (red) and MAS (orange) es-
timators yield results ranging between 1 to 1.8 py when i varies.
The MB (pink) estimator provides stable estimates in the range
1.4 to 1.5 pg, which is consistent with the fact that the posterior
estimators minimize the risk function. This of course has a cost,
and the MB estimator provides the largest averaged relative bias
here compared to the other methods, with the exception of the
naive (black) one.

More generally, for each value of the true polarization an-
gle ¥ between —/2 and 7/2, we build a sample of 10000 sim-
ulated measurements using the same setup of the covariance ma-
trix as above. Then we compute the statistical average of the
naive, MAS, and MB estimates (black, orange, and pink lines,
respectively) obtained on this simulated sample, with their asso-
ciated 1o dispersion (black, orange, and pink dot-dashed lines,
respectively), as shown in the right-hand panel of Fig. 9. The av-
eraged MB estimates present the same characteristic as shown
in the left-hand panel. By contrast, the averaged MAS estimates
are independent of the unknown y true polarization angle. The
MAS 1o dispersion is, however, slightly larger than the MB
1o dispersion.

The impact of the effective ellipticity of the covariance ma-
trix is then analysed statistically for the MAS and MB estimators
only in Fig. 10. Instead of looking at the accuracy of the p es-
timators around one particular measurement (the most probable
one) as done in Fig. 9, for each set of true polarization param-
eters (po = 0.1, ¥), with ¥ ranging between —x/2 and 7/2,
we perform Monte Carlo simulations. For each set of true po-
larization parameters, we build a sample of 100000 simulated
measurements on which we apply the MAS and MB estima-
tors to finally compute the statistical relative Bias, and Risk,,,
as defined in Sect. 4.1. This is done for various setups of the co-
variance matrix chosen to cover the whole range of the extreme
and low regimes. The minimum and maximum relative Bias,
and Risk, are then computed over the whole range of ¥ and
effective ellipticity &.¢ in each regime of the covariance matrix
to build the shaded regions of Fig. 10 for the MAS (top panels)
and MB (bottom panels) p estimators. It appears that the rela-
tive Bias, of the MAS estimator is less affected by a change in
ellipticity for S/N > 2 than the MB estimator, even in the ex-
treme regime of the covariance matrix. The dependence of the
risk function on the ellipticity is almost identical for the two es-
timators around their respective canonical curve. The thickness
of the risk function region is slightly smaller for the MB estima-
tor than for the MAS estimator at low S/N (<3), while it is the
opposite for higher S/N (>3), as already observed in the canoni-
cal case.

4.5. Polarization fraction uncertainty estimates

The questions of estimating the polarization uncertainties and
how uncertainties are propagated are essential in reliable po-
larization analysis. The best approach consists of building the
confidence intervals to retrieve robust estimates of the lower
and upper limits of the 68%, 95%, or 99.5% intervals, which
is valid even when the distribution is not Gaussian. As already
mentioned in Sect. 3.3, building optimized confidence inter-
vals including the full knowledge of the covariance matrix may
represent a challenge for large samples of data. As a result,
P14 provides analytic approximations of such confidence inter-
vals for the MAS estimator, which can be extremely useful.

A commonly used approach, however, is to provide the 1o
dispersion, assuming the Gaussian distribution of the p estimates
as a first approximation. We have already stressed the difference
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Fig. 9. Illustration of the robustness of the p estimators against the unknown i parameter when the covariance matrix departs from the canonical
value. The covariance matrix is set up with . = 2 and a S/N py/0, ¢ = 1, and a true polarization fraction py = 0.1. For each value of i, we
first illustrate (in the left-hand panel) the performance of the seven estimators on one particular measurement set to the maximum of the PDF. We
focus then on the statistical average estimates p computed over 10 000 Monte-Carlo realizations for each value of the polarization angle for the
naive, MAS, and MB estimators (right-hand panel), where the full lines stand for the mean, and the dot-dashed lines for the 1o dispersion.
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Fig. 10. Impact of the effective ellipticity of the covariance matrix on the statistical relative Bias, (left column) and Risk,, (right column) quantities
in the extreme (light shaded region) and low (dark shaded regions) regimes, for both MAS (orange, top) and MB (pink, bottom) p estimators. The
domain of the naive measurements is repeated in grey shaded regions on both plots. The canonical case of the MAS (and MB) is also repeated on
each panel in dashed orange (and pink) lines. This is based on 100 000 Monte-Carlo simulations for each set-up of the covariance matrix, the S/N,

and the true polarization parameters.

between the risk function and the variance, and the limitations
of the latter to derive robust uncertainties in the presence of bias.
We compare below the performance of the usual uncertainty es-
timates introduced in Sect. 3 to provide robust 68% tolerance
intervals: MAS variance, credible intervals MAP, and 1o a pos-
teriori dispersion MB.

Starting with a true py value, we performed Monte-Carlo
simulations in the low regime of the covariance matrix, by
exploring the whole range of the true polarization angle ¢, with
a S/N ranging from 0 to 30. For each simulated measurement
(p, ¥), we compute the p estimates with their uncertainty esti-
mators o,. We then compute the a posteriori probability to find
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Fig. 11. Probability of finding the true polarization fraction p, inside the
interval [p — Jg’w, P+ 0';"], where ' and " are the lower and upper
limits of each estimator: credible intervals ML/MAP (blue), a posteri-
ori variance MB (pink), and MAS variance (orange). It is plotted as a
function of the S/N py/0p, . 10000 Monte-Carlo simulations for each
setup of the S/N have been performed assuming a covariance matrix in

the low regime. The Gaussian level at 68% is shown as a dashed line.

the true pg inside the interval [p — 0';"”, D+ 0';” ]. In the case

of the MAP estimator, the lower and upper limits of the inter-
val, pyap — o-i%‘Z\P and puap + 0';1;“, are set to p\ip and pyr o,
respectively, (with 4 = 68 as defined in Sect. 3.2), which can
be asymmetric. We report the results compared to the expected
68% level in Fig. 11. We recall that this comparison approach
is frequentist, while anything derived from the Bayesian PDF is
used to build single estimates and to be compared with the con-
fidence intervals.

As pointed out in Sect. 3.1, the theoretical variance associ-
ated with the MAS estimator still tends to provide slightly lower
probabilities than the expected 68% at low S/N, mainly due to
the asymmetry of the distribution. The variance associated with
the MB estimator, which is more biased at low S/N, gives ex-
tremely low probability of recovering the true p, value at low
S/N (<0.5). By contrast, it provides probabilities greater than
68% (as high as 90%) for S/N between 0.5 and 2. This comes
from the fact that the MB variance statistically over-estimates,
by a factor of 2, the exact variance of the a posteriori pyp dis-
tribution at low S/N (<2). Thus the MB uncertainty estimator
yields conservative estimates of the uncertainty for S/N > 0.5.
At high S/N (>3), all these uncertainty estimators provide com-
patible estimates of the probability close to 68%.

Because the true S/N is always unknown (see Sect. 4.6), the
probability of finding the true py value in the confidence interval
is also shown as a function of the measured S/N in Fig. 12. This
much more realistic picture shows that the variance estimates
provide reliable probability for measured S/N greater than ~6.

4.6. Polarization signal-to-noise ratio

In any real measurement, the true S/N py/o ), remains un-
known. From observations, we only have access to the mea-
sured S/N, which can be obtained by the ratio p/o associated
with each estimator or by a confidence interval approach (see
P14), which is much more robust at a low true S/N. We show in
Fig. 13 the accuracy of the measured S/N compared to the true
S/N for the four following methods: the naive estimate plus con-
ventional estimate of the uncertainty, the MAS estimate with the
associated variance, the MB estimate and its variance, and the
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Fig. 13. Average measured S/N computed over 10000 Monte-Carlo
simualtions as a function of the true S/N for four methods: naive p/op, ¢
(dark), MAP confidence intervals ﬁML/U'ﬁ,MAP (blue), MB ﬁMB /O-ﬁ,MB
(pink), and MAS variance pyas/opmas(orange). The covariance ma-
trix is taken in its /ow regime.

ML estimate with the MAP credible intervals. We observe that
all methods agree only for a true S/N over 3, giving back the
true S/N in this regime. Below this true S/N, the measured S/N
becomes extremely biased regardless of the method used, due to
the bias of the measurement p itself, but also due to the bias in-
troduced by the variance as an estimate of the uncertainty when
the output distribution departs from the Gaussian regime.

5. | estimator performance

As pointed out by PMA I, once the covariance matrix is not
canonical (g.¢ > 1), a bias of the polarization angle measure-
ments i appears with respect to the true polarization angle .
This bias may be positive or negative. We propose to compare
the accuracy at correcting the bias of the polarization angle of
the four following ¢/ estimators: naive measurements ¢, the ML
z,/A/ML (which is equivalent to the MAP 1,/A/MAP), the MP2 zﬁMpz, and
the MB vg.

5.1. Methodology
Similarly to the p estimators, we define the relative bias and risk

function on ¥ as
<l@ - ¢0> . <(l@ - ¢0)2>
— and Risky = ——5——,
Ty,0 o 00

Biasy, = (38)


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424451&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424451&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424451&pdf_id=13

L. Montier et al.: Polarization measurement analysis. II.

where ¢ is the polarization angle estimate computed on the sim-
ulated measurements ¥, ¥ is the true polarization angle, () de-
notes the average computed over the simulated sample, and o7 o
is the standard deviation of the simulated measurements.

5.2. Performance comparison

We explore the performance of the four i estimators at four
S/N = 0.5,1,2, and 5 (from top to bottom) and a covariance
matrix with an effective ellipticity €. = 2, in Fig. 14. The rel-
ative Biasy, (left-hand panels) and Risk, (right-hand panels) are
plotted as a function of the true polarization angle . While the
MB estimator seems to provide the least biased estimates with
the lowest risk function at low S/N (<1), it becomes the least ef-
ficient at higher S/N. In contrast, the ML (or MAP too) presents
poor performances at low S/N, but provides impressive results at
high S/N, reducing the relative bias close to zero at a S/N of 5.
The MP2 estimator does not present any satisfactory properties:
strong relative bias and risk function in almost all cases. This
@Mpz estimator can therefore be ruled out.

An overview of the performance of the four i estimators as
a function of the S/N is shown in Fig. 15 after marginalization
over all the possible values of the ¢ parameter. Since the rel-
ative Bias, can be positive or negative depending on ¥, we
compute the average of the absolute value of the relative bias,
([Biasy|) as an indicator of the statistical performance of the es-
timators regardless of the true polarization angle. We observe
again in the left-hand panel of Fig. 15 that the MB estimator
provides the lowest relative bias for S/N < 1.2, while the ML is
especially powerful for §/N > 2. All estimators provide almost
the same results for the average Risk, (left-hand panel), even if
MB appears slightly better than the others, including the naive
measurements.

The examples provided above were computed with an ex-
treme effective ellipticity (e.s = 2) to emphasize the observa-
tions, but the same conclusions can be reached for lower values
of the ellipticity. See, for example, the case with .4 = 1.1 shown
in Fig. 15. In the low regime of the covariance matrix, however,
the statistical relative bias on ¢ is very small, typically smaller
than 5% of the dispersion, so that the need to correct the bias on
¥ remains extremely limited.

5.3. Polarization angle uncertainty estimates

Once a reliable estimate of ¢ based on the MB and ML (MAP)
estimators has been obtained, we would like to build a robust es-
timate of the associated uncertainties Ty which should be done
by building confidence intervals. Because building confidence
intervals may represent a hard task in some cases, for example
when dealing with the full covariance matrix, we explain other
methods below.

One option is to use the uncertainty associated with the MB
estimator, o mp (see Eq. (34)). Another is to use the credible in-
tervals built around the MAP estimates on the posterior PDF. We
can keep the lower and upper limits, /%% = and l//uMpAP computed

MAP
for a 68% credible interval or build a symmetrized uncertainty:

Ly
_ p lo
TiMAP = 5 ( MAP ~ M‘XP)' (39)
A third option consists in taking the conventional uncertainty
given in PMA I, derived from the derivatives of the polar-
ization parameters. PMA I has already shown that this ¢ un-
certainty estimator, associated with the naive measurements,

tends to systematically underestimate the true dispersion of the
¥ distribution.

We first assume the canonical simplification of the covari-
ance matrix, which implies that the ¥ measurements are not sta-
tistically biased. We also recall that under such assumptions, the
ML (MAP) and MB ¢/A/ estimators will give back the measure-
ments . We study, however, how the uncertainties associated
with these two estimators can be used to get a reliable estimate
of the uncertainty o;. Starting from a true point (po, ¥o), we
simulate a sample of 1000 simulated measurements p, ¢ at a
given S/N po/o,, on which we apply the two ML (MAP) and
MB ¢ estimators and their associated uncertainty o5 map and
o, mp» respectively. From this simulated set, we can derive the
averaged o, for both methods. Because all estimators give back
the measurements in the canonical case, we compare the MAP
and MB polarization angle uncertainties estimators directly to
the true dispersion of the ¥ measurements in Fig. 16. We also re-
peat the average of the conventional estimates of the polarization
uncertainty estimate, which has been shown by PMA I (see their
Fig. 7) to underestimate by a factor of two the true uncertainty at
low S/N (<2). We observe that the MAP estimator o7 \jap pro-
vides an extremely good estimate of the polarization angle un-
certainty compared to the true one over the whole range of S/N,
even if slightly conservative up to a S/N of 5. The MB estimator
o mp Provides consistent estimates of the uncertainty from in-
termediate S /N ~ 1, but still underestimates at lower S/N (<1).

In the non-canonical case a statistical bias on ¢ appears,
which can be partially corrected using the appropriate s esti-
mators (see Sect. 5.2), leading to an output distribution of the
J estimates. We quantify the performance of the i uncertainty
estimators via Monte-Carlo simulations, as done for the p uncer-
tainties. Starting from a set of polarization parameters (py = 0.1,
-m/2 < o < m/2), we build a sample of simulated measure-
ments (p, ¥) using various setups of the covariance matrix in
the low regime, and various S/Ns ranging from 0 to 30. We then
compute the a posteriori probability to find the true polarization
angle  in the interval [ — o-}z"w, v+ o-u; 1, where o-};’“’ and o-“;
are symmetrized. The results are shown as a function of the true
S/N po/op in Fig. 17 and of the measured S/N p/o; in Fig. 18.
We observe that the MAP estimator provides slightly conserva-
tive probabilities over the whole range of S/N. The MB estimator
gives low probabilities to recover the true polarization angle v
for a true S/N < 1 and a measured S/N < 2.

6. Three-dimensional case

In all of the preceding sections, the total intensity / was assumed
to be perfectly known, I = [y. In some cases, however, this as-
sumption is not valid as discussed by PMA I. For instance, one
needs to subtract any unpolarized component from the observed
intensity signal, leading to three main problems: i) the derived
polarization fraction may be grossly underestimated if this is not
done properly; ii) this subtraction may be subject to a relatively
large uncertainty, larger than the noise on the total intensity, and
could lead to diverging estimates of the polarization fraction
when intensity crosses null values; iii) this uncertainty on this
unpolarized component intensity level should be included in the
3D noise covariance matrix and propagated to the uncertainty es-
timates of the polarization fraction. This happens, for instance,
when dealing with the polarization fraction of the Galactic dust
component at high latitude, where the total intensity of the signal
is strongly contaminated by the unpolarized signal of the cosmic
infrared background (CIB).
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Fig. 14. Comparison of the relative Bias, (left) and Risk, (right) quantities of the four  estimators: naive (black), ML (blue), MP2 (green), and
MB (pink) plotted as a function of the true polarization angle ¢y and computed at four S/Ns of py/o,c = 0.5, 1, 2, and 5. The covariance matrix
issetto e =2 and p = 0 (g = 2). 1000 Monte Carlo realizations are performed for each set of the polarization angle and the S/N.
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Fig. 16. Average polarization angle uncertainty as a function of the S/N
in the canonical case and computed over 1000 Monte-Carlo simulations
for each value of the S/N: true uncertainty o, (black), conventional
estimate oy ¢ (C, dashed dark), ML oy \iap (blue), and MB o7, v (pink)
estimators. The covariance matrix is assumed to be canonical.

The Bayesian approach has the definite advantage over other
estimators discussed here in that it can deal fairly easily with 3D
(1, Q, U) noise. However, an uncertain total intensity still poses
problems, which are most acute in low brightness regions, since
the noisy / may become zero or negative, leading to infinite or
negative polarization fractions. With this in mind, it is possible
that the choice of the prior in py and I, may have a strong impact
on the pyp estimate. One may, for instance, choose to allow for
negative /y in low-brightness regions, which implies extending
the definition range of the polarization fraction to the negative
part, leading to a prior defined on [—1, 1]. Another possibility in
this case, and a possible development of the present paper, is to
extend the dimensionality of the problem to include the unpo-
larized intensity component Iy, €.2., With a flat prior between
Lofrset.min and Iofrser,max, While still imposing Iy > 0.

We stress that the Bayesian approach is also currently the
only one that can deal with correlation between total intensity /
to Stokes parameters Q and U. We note, however, (i) new and
forthcoming polarization data sets have a much more control
over these systematics; and (ii) the impact of these correlations
between noise components on the polarization fraction and angle
bias is quite limited, as shown by PMA 1.
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Fig. 17. Probability of finding the true polarization angle i inside the
interval [if — (T};W, U+ U;p ], where o-}j’w and o are the lower and upper
uncertainties for each estimator, ML/MAP (blue) and MB (pink), and
plotted as a function of the S/N py /0, . For each value of the S/N 1000
Monte-Carlo simulations have been carried out in the low regime of the
covariance matrix. The expected level at 68% is shown as a dashed line.
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Fig. 18. Same as Fig. 17, but plotted as a function of the measured S/N
ﬁ/O‘f,.

7. Conclusion

We have presented in this work an extensive comparison of the
performance of polarization fraction and angle estimators. While
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Simmons & Stewart (1985) focused on the common estimators
of the polarization fraction, such as the maximum likelihood
(ML), the most probable (MP), and the asymptotic (AS), and
Quinn (2012) suggested using a Bayesian approach to estimate
the polarization fraction, we have generalized all these methods
to consider the full covariance matrix of the Stokes parameters.
We also included in this comparison a novel estimator of the po-
larization fraction, the modified asymptotic (MAS, Plaszczynski
et al. 2014). In addition, we performed the first comparison of
the performance of the polarization angle estimators, since a sta-
tistical bias of ¢ is expected when the covariance matrix departs
from its canonical form. We followed a frequentist methodol-
ogy to investigate the properties of the polarization estimators,
even when dealing with the frequentist estimators inspired by
the Bayesian approach.

The question of the performance of a p or i estimator de-
pends intrinsically on the analysis we would like to carry out
with these quantities. Whether one includes the full covariance
matrix or not is one of the first questions that must be handled,
but the more important aspect relies on the properties of the
output distribution of each estimator. In practice, a compromise
between three frequentist criteria has to be found: a minimum
bias, a minimum risk function, and the shape of the output dis-
tribution, in terms of non-Gaussianity. We present below a few
recipes associated to typical use cases:

— Build a mask. It is usually recommended to build a mask on
the intensity map, instead of using the S/N of the polariza-
tion fraction, so that no values of the polarization fraction
(especially low values of p) are discarded in the further anal-
ysis. It can be useful, however, to build a mask based on the
S/N of a polarization fraction map when we are interested in
strong values of the polarization fraction only, and we try to
reject p estimates artificially boosted by the noise. This is the
case when we look for the maximum value of p, for example.
In this context we suggest following the prescription of P14,
using a combination of the MAS estimator with confidence
intervals. This method allows building conservative domains
where the S/N is ensured to be greater than a given threshold.
P14 provide numerical approximations in the canonical case.
If one wants to take the specificity of the noise properties in
each pixel into account, confidence intervals can be built for
any covariance matrix (including ellipticity and correlation),
but it could require intensive computing. Another alternative
in that case is to build credible intervals using the posterior
distribution (MAP).

— Large maps of the polarization fraction with high S/N on the
intensity. Another typical use is to provide large maps of the
polarization fraction with the associated uncertainty, when
the intensity is assumed to be perfectly known. Because of
their discontinuous distributions presenting a peak at p = 0
and their strong dependence on the unknown true polariza-
tion angle ¥, the common estimators of p (ML, MP, and
AS) are not designed well for this purpose. These estima-
tors could produce highly discontinuous patterns with zero
values over the output p map when the S/N goes below 4,
which may imply complicated analysis that include upper
limit values. To avoid these issues, we first suggest using the
MAS estimator, which has been shown to produce the lowest
relative bias, with a continuous output distribution that be-
comes close to a Gaussian for S/N greater than 2. Moreover,
the relative risk function associated with the MAS estimator
becomes competitive for S/N > 3, while the MB estimator
minimizes the relative risk function for an intermediate S/N
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between 1| and 3. The uncertainties can then be derived again
from the confidence or credible intervals, depending on the
ellipticity of the covariance matrix. A second option, espe-
cially suited to intermediate S/N (2—-3), consists in perform-
ing a preliminary analysis on the data to build a prior from
the p distribution, which can then be injected into the MB
estimator. The performance of this method strongly relies on
the properties of the initial true distribution. It is particularly
efficient for true polarization fractions largely greater than
zero, to avoid the major drawback of the MB estimator pre-
senting a lower limit that is proportional to the noise level.
The MB (with flat prior) estimator therefore presents a cut-
off at 0.8c, so that it can never provide null estimates of p.
We stress that above a S/N of 4, all methods (except MP2)
fall into agreement.

— Combined polarization fraction and angle analysis. The
Bayesian estimators of pyp and I&MB may be used to build
estimates of the polarization fraction and angle simultane-
ously, by taking the full covariance matrix into account, in-
cluding the ellipticity and correlation between Q and U, and
the correlation between total and polarized intensity. This
could be useful when performing an analysis over large areas
with inhomogeneous noise properties, when the S/N on the
intensity becomes problematic or when an important corre-
lation between I and (Q, U) exists. Nevertheless, we stress
that the output distributions of the MB estimates are strongly
asymmetric at low S/N (<3) and that the Bayesian uncer-
tainty estimates cannot be used as typical Gaussian 68% tol-
erance intervals.

— Low S/N on the intensity. We recommend in this case to use
the Bayesian estimators that allow simultaneous estimates of
the intensity and the polarization parameters, taking the full
covariance matrix into account, and to include the impact of
the uncertainty of the intensity on the polarization fraction
estimate.

— Very low S/N studies. Very low S/N s studies may require
different approaches. We have seen that at low S/N, all esti-
mators provide biased estimates of the polarization fraction,
with highly asymmetric distributions. The more conserva-
tive option in this case is to use the confidence or credible
intervals. Similarly the question of assessing the unpolarized
level of a set of data (i.e., S/N ~ 0) has been first raised by
Clarke et al. (1993). They suggested using a Kolmogorov test
to compare the measurement distributions with the expecta-
tion derived from the Rice distribution with py = 0. Another
option is to build the likelihood in two dimensions (Q, U) to
perform a ¥ test with Qp = Uy = 0. A last method could be
to use the Bayesian posterior probability B(polp, o)) to as-
sess the probability of having py within a specified interval
of zero (or exactly po = 0 if delta functions are allowed in
the prior) for a given measurement or a series of measure-
ments by convolving all individual PDFs (see Quinn 2012,
for details about the complications that can arise in such an
analysis).

— Polarization angle. Concerning the polarization angle es-
timates 1,7/ we have shown that the ML provides the best
performance in terms of relative bias and risk function for
S /N > 1.1t corrects a potential bias of ¥ when the covariance
matrix is not in its canonical form. Because the ML and MAP
estimators give equivalent results, the MAP can be used to
efficiently build credible intervals and symmetric uncertain-
ties, which have been shown to be in a very good agreement
with the output distributions. Nevertheless, we stress that the
level of the absolute bias of ¢ remains extremely limited
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compared to the dispersion of the polarization angle in most
cases (i.e., in the low and tiny regimes of the covariance ma-
trix), so that it can usually be neglected.
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Appendix A: Most probable in general case

The MP2 estimators, pypr and I&Mpz, have to satisfy Egs. (8)
and (9) simultaneously. These relations can be solved using the
fully developed expression of fop, including the terms of the in-
verse matrix Z;I:

s = U1 V12 Al

P ( V12 022, A1)

leading to

R 1 ((1)11022 - U%Z) p2 - 011) sin 2(// + 017 COS 21,0

Ymp2 = 3 arctan > . ,
((U]]Uzz - U12) p? - 1)22) cos 24 + vy sin 2y

Ay

H = _ . A2

pre2 Az CcOoS 2¢Mp2 + A3 sin 2(#1\/[])2 ( )

with

Ay = p(vn cos® 20 + vy sin 2 + 2v1 cos 2y sin2y) = 1/p

Ay = v11Cc0S2% + v1pSin 2,

Az = vy SIn 2y + vy cos 2. (A.3)

This analytical solution only depends on the input measurements
(p, ¥) and the covariance matrix ¥,. Because the polarization
fraction must be positive, there is a lower limit of the S/N so
that pvpa = 0. In that case, J/Mpg is not constrained anymore
and can be chosen to be any possible value. We set it equal to
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the measurement ¢. Moreover, this expression can be simplified
when p = 0, which implies that vj, = 0, leading to

N 1 p2 - 1/1)22
WMPZ = 5 arctan (m tan 2(,// s (A4)

2 -2

p (vn COS” 2 + vy; sin 21//) -1/p
Pump2 = > - —
11 COS 24 cOS 2\pa + Uop Sin 24 sin 2¢vpy
In the canonical case (v;, = 0, vy = vy = 1/0'12,), we recover the
expression derived by Quinn (2012):
dvpr = ¥,
2

N _Jp-o,/p forp>o,
pPmp2 = {O for p < 0. (A.5)

Appendix B: Bayesian posterior PDF

We illustrate the shape of the posterior PDF in Fig. B.1, where
Bon(po, Yol p, ¥, Z,) is shown at four levels of the S/N and five
couples of (&, p). It is interesting to notice that the posterior PDF
allows the polarization fraction to be zero at low S/N, when these
values were rejected by the PDF (see Appendix B of PMA I).
Moreover, the posterior PDF peaks at the location of the mea-
surements used to compute it. As largely emphasized in PMA 1,
we also recall that once the effective ellipticity of the covariance
matrix departs from the canonical simplification, the PDFs are
sensitive to the initial true polarization angle .
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Fig. B.1. Posterior probability density functions Bap(po, o | p, ¥, Z,) computed for the most probable measurements (p, ¢) of the fop distribution
(crosses), which were obtained for a given set of true polarization parameters ¢y = 0° and py = 0.10 (dashed lines) and various configurations of
the covariance matrix, at four levels of S/N py/o,¢ = 0.1,0.5,1, and 5 (top to bottom). The scales of the py and y axes may vary from one row
to the next in order to focus on the interesting part of the PDF. The black contours provide the 90, 70, 50, 20, 10, 5, 1, and 0.1% levels.

Appendix C: Mean Bayesian posterior analytical
expression
In the canonical case, the MB estimator of the polarization frac-
tion p takes a simple analytical expression. The Bayesian poste-
rior on p is given in this case by
R(p|po,2p) - k(po)

1 ’ ’ ’ ’
Iy R(p 1y Zp) k(py) dp;,

where « is the prior chosen equal to one over the definition
range ([0, 1]), and R denotes the Rice (1945) function which is
defined by

2 2

p-+p
R(plpo’zl’):%e"p(_ ZOJIO(ppZOJ,
O-p 20’17 O—P

By(polp,Z)p) = (C.D

(C.2)

where 7 ((x) is the zeroth-order modified Bessel function of the
first kind (Gradshteyn & Ryzhik 2007), and o, = og/ly =
oy/ly is the characteristic noise level of the polarization
fraction.

The MB estimator and the posterior variance take the follow-
ing forms

) poetr27) 1y (%’? ) dpo
PmB = - — (C.3)
A (2 o

and
1 . 2 20
Iy (po = pup)? 270 1 (%O)dpo

ag =
p.MB 1
INCSE (%)dpo
P

(C4)

If we assume in a first approximation that the integral of p over
[0, 1] can be taken over [0, +co) (which is fine at high S/N), and
we use the formula of Prudnikov et al. (1986),

o 2
a1 —by? I a.
fo 2l Ty(endy = 5b F(a/2)1F1(2,1,4b), (C.5)

where I' is the Gamma function, | | the confluent hypergeomet-
ric function of the first kind, and a, b, and c all positive reals, we
can derive

00 -1 2
(=ri/2o3) T, (@Jd E(LJ zr(l) F (1 1 p_J
€ 7 p - s Lo
fo 0 o ) 2072 2/, "2 207
Vr/20, "0 1o (p? [
(C.6)
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Fig. C.1. Accuracy of the approximate analytical expression of the
Bayesian estimates of the polarization fraction pyp (solid line) and its
associated uncertainty &, v (dashed line), as a function of the S/N of
the measurement p/o,, where o, = oo /Iy = oy /1.

and
oo 2
-r12a3) 7. | PPO ) .
j(; poe( Py )Io(o_z%)dpo —UplFl(l,l,zo_l%)
= o2e 2, (C.7)
and finally

00 -3 2
2o(rra) p (PPo) o L) PR (3) 5 (B 2
Lpoe oy IO(O'Z dpo 2202 r > 1Fl 2,1,20_%’

P
3 2
Vr/203 1 Fy (5, 1, p—)-(c.s)

2
20'p

We finally obtain the simple expression of the MB estimator and
the associated Bayesian variance:

Pms = - (C.9)
70(#)
and
. . (3 P? 3. P
GpMB = PMB \/EGXP( 4%,% )IO(Q] 1F (E’ L, 27_%) -1
(C.10)

As shown in Fig. C.1, this analytical approximation gives less
than 0.15% of relative error at low S/N compared to the exact
Ppms estimate and less than 0.05% for the associated uncertainty.
This small departure quickly tends to O for a S/N > 4. Thus
these expressions may be used to speed up the computing time
when the canonical simplification may be assumed.

We explore in Fig. C.2 to the extent at which the canonical
simplification may be done in the presence of an effective
ellipticity of the covariance matrix. In this more general case,
we suggest changing o, into o, ¢ in the Eqs. (C.9) and (C.10).
The relative error between the approximate estimate and the
exact Bayesian estimate has been explored in two regimes
of the covariance matrix, the low (1 < & < 1.1) and tiny
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Fig. C.2. Accuracy of the generalized approximate analytical expres-
sion of the Bayesian estimates pyp (fop) and 6, ms (bottom), taking the
full covariance matrix components into account, in the low (light grey)
and tiny (dark grey) regimes.

(1 < & < 1.01) regimes. Three domains are observed in the
top panel of Fig. C.2 dealing with the accuracy of the pyp es-
timate: i) at low S/N (<1), the bias on p is so large that the
presence of an effective ellipticity does not significantly affect
the estimate in comparison; ii) for an intermediate range of the
S/N (1 < S/N < 4), the effective ellipticity of the ¥, signif-
icantly affects the Bayesian estimate so that the departure of
the analytical approximation from the exact estimate becomes
important; iii) at high S/N (>4), the noise is so low that the
Bayesian estimate is not sensitive to the asymmetry of the co-
variance matrix anymore. Consequently, the approximate analyt-
ical expression provides very good estimates of pyp for S/N < 1
and S/N > 4, and 5% to 0.5% of relative error for intermediate
1 < §/N < 4 in the low and tiny regimes of the covariance ma-
trix, respectively. In the extreme regime of the covariance matrix,
the relative error increases up to 20%.

Concerning the accuracy of the Bayesian approximate es-
timate &, vp of the polarization fraction uncertainty (bottom
panel), the agreement is better than 0.1% for S/N < 1, and
about 8% S /N > 1 in the low regime, and 1% in the tiny regime.
Because the uncertainty becomes small compared to the polar-
ization fraction at high S/N, up to 8% of error in 6 vp is still
acceptable for this approximation.
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ABSTRACT

This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust
polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias
and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic
dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is
high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (N < 2 x 10?! cm=2). The polarization fraction displays
a large scatter at Ny below a few 10>! cm™2. There is a general decrease in the dust polarization fraction with increasing column density above
Ny ~ 1x10?! cm™ and in particular a sharp drop above Ny ~ 1.5 x 10> cm™2. We characterize the spatial structure of the polarization angle using
the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary
structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without
variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results
suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than
to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured
with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance
along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows,
however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.

Key words. ISM: general — dust, extinction — ISM: magnetic fields — ISM: clouds — submillimeter: ISM

1. Introduction

Our Galaxy is pervaded by an interstellar magnetic field of a

* Appendices are available in electronic form at few microgauss, which fills the entire disk and halo. This mag-
http://www.aanda.org netic field manifests itself in a variety of ways, including Zeeman
** Corresponding author: J.-P. Bernard, splitting of atomic and molecular spectral lines, Faraday rotation
e-mail: Jean-Philippe.Bernard@irap.omp.eu of polarized radio signals, synchrotron emission from relativistic
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electrons, and polarization of starlight and thermal dust emis-
sion. With a pressure larger than the thermal pressure of all
phases and comparable to that of the cosmic rays (Cox 2005),
the Galactic magnetic field (GMF) plays a crucial role in the
ecosystem of our Galaxy. In conjunction with gravity, it governs
the structure and the dynamics of the interstellar medium (ISM),
regulates the process of star formation, accelerates cosmic rays,
and channels their trajectories to confine them to the Galaxy. In
addition to a large-scale regular, or coherent, component and a
fluctuating component produced by interstellar turbulence (with
scales up to 100 pc; e.g., Gaensler & Johnston 1995; Haverkorn
et al. 2008), the GMF also possesses an ordered random (e.g.,
Beck 2009; Jaffe et al. 2010), or striated random (Jansson &
Farrar 2012a), component, whose orientation remains nearly
constant over large scales, but whose strength and sign vary on
small scales. Such fields are probably produced through com-
pression or shearing of isotropic random fields by the Galactic
differential rotation, or at large-scale spiral arm shocks, or else
by rising hot plasma bubbles.

Our knowledge and understanding of the GMF has improved
considerably over the past few years, as a result of both progress
in the quality (sensitivity and resolution) of radio observations
and extensive modelling efforts (e.g., Sun et al. 2008; Sun &
Reich 2010; Ruiz-Granados et al. 2010; Jaffe et al. 2010, 2011;
Pshirkov et al. 2011; Fauvet et al. 2012, 2013; Jansson & Farrar
2012a,b). However, the existing radio observations have inher-
ent limitations, as both Faraday rotation measures (RMs) and
synchrotron (total and polarized) intensities are quantities inte-
grated over the line of sight (LOS), which depend on the poorly
constrained density distributions of thermal and relativistic elec-
trons, respectively. A promising avenue to obtain a more com-
plete and more robust picture of the GMF structure is to comple-
ment the radio data with Planck' measurements of the polarized
thermal emission from interstellar dust, which is independent of
the electron densities.

A glance at the Planck all-sky intensity maps (Planck
Collaboration I 2014) reveals that, in addition to the mottled
structure of the cosmic microwave background (CMB) at high
Galactic latitudes, the dominant pattern is that of the emission
from our Galaxy. At the lowest frequencies, from the 30 GHz to
70 GHz bands of the Planck Low Frequency Instrument (LFI,
Bersanelli et al. 2010), synchrotron emission dominates; at the
highest frequencies, from the 217 GHz to 857 GHz bands of the
High Frequency Instrument (HFI, Lamarre et al. 2010), thermal
emission from interstellar dust is the dominant emission. These
foregrounds have to be understood and taken into account for
detailed CMB studies, but they also provide a unique opportunity
to study the Galaxy’s ISM.

In particular, the thermal dust emission is linearly polar-
ized (e.g., Benoit et al. 2004; Vaillancourt 2007). This polarized
emission overpowers any other polarized signal at the higher
Planck frequencies (e.g., Tucci et al. 2005; Dunkley et al. 2009;
Fraisse et al. 2009). In addition to hindering the detection of
the sought-after, odd-parity, B-mode polarization of the CMB
(Planck Collaboration Int. XXX 2015), the polarized dust emis-
sion provides, in combination with the emission spectrum itself,

' Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a
scientific consortium led and funded by Denmark.
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a powerful constraint on the physical properties of the dust and
on the structure of the magnetic field in the Galaxy.

The linear polarization of the thermal dust emission arises
from a combination of two main factors. Firstly, a fraction of
the dust grain population is non-spherical, and this gives rise to
different emissivities for radiation with the electric vector paral-
lel or orthogonal to a grain’s longest axis. Secondly, the grains
are aligned by the interstellar magnetic field because they are
rotating, probably with differing efficiencies depending on grain
size and composition (Draine & Fraisse 2009). While the details
of this process remain unclear (Lazarian 2003, 2007), there is
a consensus that the angular momentum of a grain spun up by
photon-grain interactions (Dolginov & Mitrofanov 1976; Draine
& Weingartner 1996, 1997; Lazarian & Hoang 2007; Hoang &
Lazarian 2008) becomes aligned with the grain’s shortest axis,
and then with the magnetic field via precession (e.g., Martin
1971). The end result is that, if we look across magnetic field
lines, the rotating grain has its long axis orthogonal to the field
lines, and accordingly dust emission is linearly polarized with its
electric vector normal to the sky-projected magnetic field?.

A related phenomenon occurs at near-UV/optical/NIR wave-
lengths (e.g., Martin 2007), where the light from background
sources becomes linearly polarized as a result of dichroic ex-
tinction by the aligned dust grains (Davis & Greenstein 1951).
Because extinction is higher for light vibrating parallel to the
grain’s longest axis, i.e., perpendicular to the field lines, the
transmitted light is linearly polarized with its electric vector par-
allel to the sky-projected magnetic field. In fact, historically, the
optical polarization caused by dust extinction led to the predic-
tion that thermal dust emission would be polarized in the mil-
limetre and submillimetre domains (Stein 1966). The predicted
orthogonality of the electric vectors in the optical and submil-
limetre on the same line of sight has been demonstrated (Planck
Collaboration Int. XXI 2015).

Thus, polarized thermal dust emission carries important in-
formation on the interstellar magnetic field structure, on the
grain alignment mechanisms, and on the grain geometrical and
physical properties. For example, polarization observations be-
tween 300 um and 3 mm, essentially the domain of the Planck
HFTI instrument, can potentially discriminate between the po-
larizing grain materials, e.g., silicate and graphite dust versus
silicate-only grains (Martin 2007; Draine & Fraisse 2009; Planck
Collaboration Int. XXI 2015; Planck Collaboration Int. XXII
2015).

The far-IR dust thermal emission being a tracer of the dust
mass along the LOS, sensitivity limits explain why detailed dust
polarized emission was observed mostly in fairly dense, massive
regions of the ISM (Dotson et al. 2000; Curran & Chrysostomou
2007; Matthews et al. 2009; Dotson et al. 2010), in general
close to the Galactic plane. Measurements of the more diffuse
medium were obtained at relatively low (>2°) angular resolution.
At these large scales, the Archeops balloon experiment (Benoit
et al. 2004; Ponthieu et al. 2005) detected the thermal dust
emission polarization at 353 GHz. The highest frequency chan-
nel of WMAP (Page et al. 2007; Bennett et al. 2013), 94 GHz,
picked up the long-wavelength Rayleigh-Jeans tail of the diffuse
dust emission and its polarization (in addition to synchrotron
emission).

2 Note that Faraday rotation is unimportant at the frequency consid-
ered here (353 GHz). Even an RM of up to ~1000 [rad/m?] through the
Galactic plane (see, e.g., Van Eck et al. 2011) results in a rotation of the
polarization direction less than a tenth of a degree.
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The Planck satellite’s HFI instrument has led to the first all-
sky survey of the polarized submillimetre and millimetre sky,
where thermal dust emission dominates. At 353 GHz, the Planck
data have an angular resolution of 5’. The polarization sensi-
tivity was expected to be such that, at a resolution of 15, ISM
structures with Ay = 1 mag would be detected with a relative
uncertainty on the polarization fraction of about 40% and an un-
certainty on the polarization angle of about 30° (Pelkonen et al.
2009). These figures improve significantly at higher Ay and/or
lower resolution. The polarized Planck data bring the first all-
sky fully sampled map of the polarized emission from dust. As
such, they provide unprecedented information on the magnetic
field geometry and the dust polarization properties relevant to the
disk of the Milky Way (MW) and star forming regions, for which
they provide statistical information that is missing in stellar po-
larization extinction data. It should be emphasized, however, that
the dust polarized emission provides information mostly on the
orientation of the sky-projected magnetic field and only very in-
direct indication about the angle of that field with respect to the
plane of the sky, and it is expected to be insensitive to the field
strength.

This paper presents a subset of the Planck polarization data
and their large-scale statistical properties. A companion paper
(Planck Collaboration Int. XX 2015) analyses the variations
of the polarization fraction and angle described here, in the
framework of simulations of anisotropic magneto-hydrodynamic
(MHD) turbulence. Two other papers provide a detailed analy-
sis of the wavelength dependence of the dust polarization, as
seen by the HFI instrument (Planck Collaboration Int. XXII
2015) and a comparison between the dust polarization at visible
and submillimetre wavelengths (Planck Collaboration Int. XXI
2015).

In Sect. 2 we describe the data, including discussion of sys-
tematic effects and the effects of the CMB intensity and polar-
ization. Maps are presented in Sect. 3, as well as the statistics
of the data. Sect. 4 discusses the implications of the 353 GHz
polarimetry for our understanding of the GMF structure, and
the conclusions are drawn in Sect. 5. Three appendices discuss
the smoothing of the noise covariance matrices, which is needed
when the original data are averaged, the debiasing methods for
obtaining polarization estimates, and tests for the effects of sys-
tematic noise bias on the structures that we observe in maps of
the polarization angle dispersion function.

2. Data

The Planck mission results are presented in Planck
Collaboration I (2014) and the in-flight performance of the two
focal plane instruments, the High Frequency Instrument (HFI)
and the Low Frequency Instrument (LFI), are given in Planck
HFI Core Team (2011) and Mennella et al. (2011), respectively.
The data processing and calibration of the HFI data used
here are described in Planck Collaboration VI (2014), Planck
Collaboration VII (2014), Planck Collaboration VIII (2014),
Planck Collaboration IX (2014) and Planck Collaboration X
(2014). The data processing and calibration of the LFI data
are described in Planck Collaboration II (2014), Planck
Collaboration III (2014), Planck Collaboration IV (2014), and
Planck Collaboration V (2014).

The Planck polarization and total intensity data that we use
in this analysis have been generated in exactly the same man-
ner as the data publicly released in March 2013 and described in
Planck Collaboration I (2014) and associated papers. Note how-
ever that the publicly available data include only temperature

maps based on the first two surveys. Planck Collaboration XVI
(2014) shows the very good consistency of cosmological models
derived solely from total intensity with polarization data at small
scale (high CMB multipoles). However, as detailed in Planck
Collaboration VI (2014; see their Fig. 27), the 2013 polarization
data are known to be affected by systematic effects at low multi-
poles which were not yet fully corrected, and thus, not used for
cosmology. We have been careful to check that the Galactic sci-
ence results in this paper are robust with respect to these system-
atics. The error-bars we quote include uncertainties associated
with residual systematics as estimated by repeating the analysis
on different subsets of the data. We have also checked our data
analysis on the latest version of the maps available to the collab-
oration, to check that the results we find are consistent within the
error-bars quoted in this paper.

The maps used include data from five independent consec-
utive sky surveys (called Surveyl-Survey5) for HFI, taken six
months apart. Due to the scanning strategy of the Planck mis-
sion, surveys taken one year apart (i.e., odd surveys 1 and 3 and
even surveys 2 and 4) share the same observing pattern, which is
different for even and odd surveys. Survey5 had a different scan
pattern from the other odd-numbered surveys, owing to a change
in the precession phase. The products also include data binned
into the first and second halves of the Planck stable pointing pe-
riods, or “half-rings” (called HR1 and HR2). Both single-survey
and half-ring data are used for consistency checks and to assess
the level of systematic effects. Here, we only analyse the polar-
ization data at 353 GHz, which is the highest frequency Planck
channel with polarization capabilities and the one with the best
S/N for dust polarization. We use the 30 GHz LFI data in our
comparison of the dust emission at 353 GHz with the microwave
and radio synchrotron emission presented in Sect. 4.4.

In the Planck  map-making process (Planck
Collaboration VIII 2014), measurements from various de-
tectors at the same frequency are combined to obtain the
Stokes parameters (/, O, and U) at each position on the sky.
The reconstructed polarization is a linear combination of the
weighted differences between the signal from pairs of polariza-
tion sensitive bolometers (PSBs) with different orientations on
the sky. The resulting maps of the Planck Stokes parameters Q
and U used in this paper are shown in Fig. 1. The corresponding
map of the observed polarization intensity P = (Q* + U?)!/?
is shown in Fig. 2. The total intensity map used in this work is
shown in Fig. 5.

2.1. Conventions and notations

The relations between the observed Stokes parameters (I, Q,
and U) and the polarization fraction (p) and polarization an-
gle () are given by

VO

p= -7 (D)
and
Y = 0.5 X arctan(U, Q), 2)

where the two arguments function arctan(Y, X) is used to com-
pute atan(Y/X) avoiding the 7 ambiguity, such that

Q = p xIxcos(2y),
U = p x I xsin(2y). 3)

For the Stokes parameters provided in the Planck data, the an-
gle convention above is with respect to Galactic coordinates
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Fig. 1. Planck 353 GHz polarization maps at 1° resolution. Upper: Q Stokes parameter map. Lower: U Stokes parameter map. The maps are shown
with the same colour scale. High values are saturated to enhance mid-latitude structures. The values shown have been bias corrected as described in
Sect. 2.3. These maps, as well as those in following figures, are shown in Galactic coordinates with the Galactic centre in the middle and longitude

increasing to the left. The data are masked as described in Sect. 2.4.

with —90° < ¥ < +90°, ¢ = 0° toward Galactic north, and ¢ be-
coming positive toward Galactic west, the direction of decreas-
ing Galactic longitude (i.e., ¢ increases clockwise). Note that
this convention is the one used in the HEALPix? software (Gérski
et al. 2005), but is different from the IAU convention (Hamaker
& Bregman 1996), which is ¢ = 0° toward Galactic north but
with ¢ becoming positive toward Galactic east, the direction

3 http://healpix.jpl.nasa.gov
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of increasing Galactic longitude (i.e., { increases counterclock-
wise). The conversion between Planck Stokes parameters and
the IAU convention is given by:

Y1au = 0.5 X arctan(-=U, Q). 4)

In this paper, all quoted values of the polarization angle are given
in the IAU convention.
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Fig. 2. Planck 353 GHz polarized intensity (P) map at 1° resolution in log;o scale. The values shown have been bias corrected as described in

Sect. 2.3. The same mask as in Fig. 1 is applied.

2.2. Bandpass mismatch leakage correction

Owing to the way the polarization maps are constructed, any
instrumental difference between detectors of the same channel
may produce a fake polarization signal, even for unpolarized sky
signal inputs. This is the case for the bandpass mismatch (BPM)
between detectors that affects Planck polarization maps. In prac-
tice, the effect corresponds to a leakage term from total inten-
sity [ into polarization Q and U. The BPM polarization leak-
age effect is therefore strongest in regions of high intensity, i.e.,
along the Galactic plane, and affects both p and . Because the
353 GHz intensity data used here are calibrated on the CMB
signal, no BPM leakage is produced by the CMB anisotropies.
Other astrophysical emission sources, however, produce BPM
polarization leakage.

Knowing the actual Planck sky scanning strategy and the
orientations of the polarization sensitive bolometers in the fo-
cal plane, the BPM polarization leakage corrections can be es-
timated from the relative responses of each detector to a given
sky astrophysical emission. The Planck Collaboration is ex-
ploring different methods to compute the relative responses of
detectors, as well as to produce total intensity maps for each
sky emission source. Two methods have been used to deter-
mine the relative responses (Planck Collaboration IX 2014).
The first one (method A) involves computing the BPM leak-
age between bolometers using the ground-measured bandpasses
(Planck Collaboration IX 2014). The second one (method B) de-
duces the relative detector response on regions of the sky where
we can obtain I, Q, and U maps for each detector individually.
Note that this can only be performed in limited regions of the
sky, outside the Galactic plane, which have been scanned in a
large number of configurations, allowing for the full reconstruc-
tion of I, Q, and U per detector. A comparison between the two
methods is presented in Planck Collaboration IX (2014).

When folding the above coefficients into the Planck scanning

strategy, we have chosen to produce template maps Tg((v) of the

BPM leakage contribution for each frequency (v) channel, for
each bolometer (b(v)) and for each Stokes parameter (X being Q
or U). The BPM polarization leakage correction is

LY = > Ry I, T}, )
b(v)

where Ry, represents the detector relative responses and /, is the
sky total intensity. For the purpose of the study presented here
we only take into account BPM leakage from dust thermal emis-
sion, because this is the dominant term at 353 GHz. The template
maps in Eq. (5) were computed using the Planck thermal dust
model described in Planck Collaboration XI (2014). We used
the standard Planck map-making procedure presented in Planck
Collaboration VIII (2014). Note that the Planck 353 GHz chan-
nel also includes emission from the CO (J = 3 — 2) line (see
Planck Collaboration VI 2014), which should also in principle be
included in the BPM leakage correction. This, however, is rela-
tively weak with respect to dust thermal emission and the cor-
responding BPM effect is expected to be small compared to that
from dust. Because we do not concentrate on regions with strong
molecular emission in this paper, no correction was applied for
the CO emission BPM leakage.

Figure 3 shows the effect of the correction for BPM on the
observed distribution of polarization angles toward the plane of
the Milky Way (|by| < 5°) in the four Galactic quadrants (Q1,
Q2, Q3 and Q4, defined by 0° < £ < 90°, 90° < £ < 180°,
180° < {51 < 270°, and 270° < {1 < 360°, respectively). When
no BPM leakage correction is applied, angles are observed to
be distributed around +20° and —5° for the inner (Q1 and Q4)
and outer (Q2 and Q3) MW regions, respectively. The differ-
ence in sign is due to the difference in average detector orienta-
tion during Galaxy crossings, resulting from the relative orien-
tation of the scanning strategy and the Galactic plane. Using the
two methods discussed above for the determination of the cou-
pling coeflicients leads to similar BPM leakage estimates. Note
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Fig. 3. Histograms of the observed polarized angle at the full data resolution toward the Galactic plane (|by| < 5°) for the four Galactic quadrants.
The various curves show data uncorrected for bandpass mismatch (red), and corrected using sky coupling coefficients derived either from ground
(method A: green) or sky measurements (method B: dark blue). The vertical dashed lines show the peak value obtained from fitting the histograms

with a Gaussian.

also that because the magnetic field is expected to be statisti-
cally aligned with the Galactic plane (see, e.g., Ferriere 2011)
we expect the polarization direction toward the plane to be on
average around s = 0°. The fact that both correction methods
bring the peak of the histograms toward this value confirms the
validity of the BPM correction method used here. In the follow-
ing, we adopted the coefficients from method B. We note, how-
ever, that although the situation is clearly improved by the BPM
leakage correction, the average observed angle distributions still
peak a few degrees away from ¢ = 0°, with the same sign pat-
tern as for the uncorrected data. This could in principle be due
to incomplete correction. However, preliminary tests have shown
that the remaining correction could be due to non-linearity in the
analogue-to-digital conversion (ADC) of the signal, which pro-
duces an additional correction with the same sign as observed
here and roughly the right amplitude.

We do not attempt here to fully assess the quality of the dif-
ferent corrections, but simply use them to estimate where on
the sky the uncertainties in the corrections are small enough
to be unimportant for this study. A plot of the BPM-leakage-
corrected polarization angle versus the uncorrected polarization
angle shows the magnitude of the correction, while the corre-
lation coefficient gives a quantitative measure. For the differ-
ent corrections considered above, the correlation coefficient is
over 0.95 for most regions of the sky at |by| > 5°. Above
|brr| = 10°, the correlation coefficients are above 0.98, implying
that the correction becomes very small. This is a natural result
of the fact that the intensity that is leaking into polarization is
brightest toward the Galactic plane. As measured from the dif-
ference between method A and B, the corresponding uncertain-
ties on the polarization angle i and fraction p are |Ay| < 10° and
Ap < 1%, respectively, toward the inner Galactic plane. These
uncertainties become less than the random errors away from the
plane. However, BPM leakage corrections are probably not the
dominant uncertainty at high Galactic latitudes and very low sig-
nal levels, where other systematic effects remaining in the data
become more important (see Sect. 2.4). For this reason, we do
not discuss specifically the polarization properties in the lowest
brightness sky area in this paper and defer this discussion to 