Laboratoire de Radioastronomie (LRA)

http://astro.ens.fr

F. Levrier - 21 septembre 2011

An overview

The team

- 10 permanent scientists : theoreticians and observers
- 10 students and post-docs
- 1 research engineer

Research areas

- Interstellar medium, accretion disks and star formation
- Magnetized fluid dynamics and astrophysical dynamos
- Opening towards cosmology

Methods and tools

- Observations with large international telescopes
- Analytical computations
- Numerical simulations with own 256-core machine and national computing centers

Astronomy's "Hilbert problems"

Do we understand the extremes of the Universe?

- \rightarrow From the extreme vacua of the intergalactic medium to neutron stars
- \rightarrow Black hole gravitational fields that rip the fabric of space-time
- → "Big Bang" physics beyond the standard model of particle physics

How do galaxies form and evolve ?

- \rightarrow Linear and non-linear growth of quantum fluctuations in the distribution of dark matter
- \rightarrow Acceleration of expansion : dark energy
- \rightarrow Dynamics and interaction of galaxies

How do stars and planets form ?

- \rightarrow The cycle of interstellar material in galaxies
- → Microphysics and macrophysics at work (turbulence, magnetic fields, chemistry,...)
- \rightarrow The Solar system as a giant laboratory

How do we fit in ?

- \rightarrow Complex molecules in space and exobiology
- \rightarrow Exoplanets : the search for another Earth
- → SETI

A brief history of time...

Formation of large-scale structures and galaxies

Millenium simulation (2005)

http://www.mpa-garching.mpg.de/galform/millennium/

Distant Universe (z=18)

Present Universe (z=0)

From galaxies to stars

Hubble Deep Field

Density waves

Tidal interactions

Star formation in spiral arms

lonization nebulae arise where newly forming blue stars are ionizing gas clouds.

Copyright @ 2004 Pearson Education, publishing as Addison Wesle

Star formation and the cycle of interstellar matter

From stars to planets

Our Solar system : a laboratory...

... but not a unique one.

560 exoplanets known to date (09/2011)

Solar system studies must be formulated in the context of protoplanetary disk and planet formation

Chemistry in space

- Rotational and vibrational modes of many molecules in the mm and sub-mm
- ~I 50 molecules detected in the interstellar medium or circumstellar shells
- ~35 in extragalactic sources

CO, H_2O , OH, HCN, HCO⁺, CS, NH₃, H_2CO , ...

The mother of all complex systems

Main research topics at LRA

Interstellar medium – Star and planet formation – Accretion disks – Magnetohydrodynamics – Dynamos **Methods**

Observations (high resolution spectroscopy) – Numerical simulations (MHD turbulence)

Opening towards cosmology

- Initial conditions of Type Ia supernovae
- Molecular lines in extragalactic objects
- Foregrounds to the CMB (Planck)

Tools of the trade

... and more to come !

Formation of molecular clouds

- RAMSES code (Teysier 2002, Fromang et al. 2006)
- Adaptive Mesh Refinement with up to 14 levels
- Periodic boundary conditions
- Covers scales 0.05 pc 50 pc
- ~30,000 CPU hours / 10 to 100 GB data sets

Compressible MHD turbulence with gravity and cooling

og of density (cm^{-3})

Thermal instability

Comparison with observations

Magnetic field vs. density

Collapse of prestellar dense cores

M. Joos, P. Hennebelle, B. Commerçon, F. Levrier

Scientific case for the simulations : The simulations describe the collapse of dense cores under their selfgravity, and aim to study the influence of turbulence and magnetic field in the process of fragmentation leading to the formation of several prestellar objects.

Turbulent energy dissipation

J. Pety, P. Hily-Blant, E. Falgarone, B. Godard

Chemistry in photon-dominated regions

Dynamos in astrophysics : from the Earth to the Sun

E. Dormy et al.

Transition from a steady dipolar dynamo mode (Earth-like) to a dynamo wave solution (Solar-like) for a critical value of the convective volume aspect ratio.

Some other topics...

From the core mass function to the stellar initial mass function

P. Hennebelle

 HC soln. HC comp.

PN soln. PN comp

10

100

Non-ideal MHD effects on core collapse

J. Masson, P. Hennebelle

diffusion

diffusion

MHD simulations post-processed with UV photochemistry

F. Levrier

Filamentary structures in the ISM : threaded by the magnetic field?

1

 M/M_f^0

0.01

[deg]

Δδ₁₉₅₀

0.1

P. Hily-Blant, E. Falgarone

Simulations of laboratory experiments

A. Ciardi

Synthetic XUV images from 3D GORGON simulations

time

Opening towards cosmology

Statistics of polarized dust emission for the analysis of Planck data

F. Boulanger, F. Levrier, E. Falgarone

CMB polarization linked to primordial gravity waves

Simulated radio skies at high redshift for the SKA and ALMA

F. Levrier with Oxford astrophysics

Perspectives

Turbulence, magnetic fields and chemistry combined : observations and theory

MHD turbulence

- Towards non-ideal MHD
- → Coupling to chemical network "on-the-fly"

Characterisation of ISM turbulence, magnetic fields and chemistry

High-resolution spectroscopy of the interstellar medium

- \rightarrow On-going Herschel and IRAM programs
- Participation in the SPICA mission project, ALMA proposals

Opening towards cosmology

- \rightarrow Characterization of foregrounds for the Planck mission
- \rightarrow Participation in the SKA project regarding extragalactic atomic and molecular gas

Within the Physics department

- Maintain close interactions within the Physics department (e.g. LPS for MHD)
- Maintain close interactions between observers & theorists
- Involvement in the teaching (introductory astrophysics, hydrodynamics,...)