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ABSTRACT
We derive a new formalism for convective motions involving two radial flows. This formalism
provides a framework for convective models that guarantees consistency for the chemistry and
the energy budget in the flows, allows time dependence and accounts for the interaction of
the convective motions with the global contraction or expansion of the star. In the one-stream
limit, the formalism reproduces several existing convective models and allows them to treat
the chemistry in the flows. We suggest a version of the formalism that can be implemented
easily in a stellar evolution code. We then apply the formalism to convective Urca cores
in Chandrasekhar-mass white dwarfs and compare it to previous studies. We demonstrate
that, in degenerate matter, nuclear reactions which change the number of electrons strongly
influence the convective velocities, and we show that the net energy budget is sensitive to the
mixing. We illustrate our model by computing stationary convective cores with Urca nuclei.
Even a very small mass fraction of Urca nuclei (as little as 10−8) strongly influences the
convective velocities. We conclude that the proper modelling of the Urca process is essential
for determining the ignition conditions for the thermonuclear runaway in Chandrasekhar-mass
white dwarfs.

Key words: convection – neutrinos – nuclear reactions, nucleosynthesis, abundances – super-
novae: general – white dwarfs.

1 I N T RO D U C T I O N

Gamow & Schönberg (1941) were the first to recognize the Urca
process (electron captures and emissions on pairs of nuclei that can
be converted into each other by electron captures/beta decays) as
a potentially strong source of neutrino cooling in degenerate stars.
This process is already responsible for significant cooling during the
late radiative phase of accreting C/O white dwarfs. For each Urca
pair, the cooling occurs at a mass shell, a so-called Urca shell, deter-
mined by the characteristic density for the pair at which the electron
captures/beta decays take place. When carbon burning starts, a con-
vective core grows and soon engulfs the Urca shells. The convective
motions across the Urca shells back and forth directly affect the net
energy release as well as the net amount of electrons captured. The
resulting phenomenon is called the convective Urca process and is
a key ingredient in linking the late evolution of the progenitor of a
Type Ia supernova (SN Ia) with the subsequent explosion (Paczyński
1972).

Over the last 30 years, there have been numerous studies of the
convective Urca process with often mutually exclusive conclusions.
Bruenn (1973) realized that nuclear heating in Urca matter outside
chemical equilibrium dominates over the neutrino losses. On the
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other hand, Couch & Arnett (1975) stressed the cooling effect of
the work done by convection. In the most detailed work to date, Iben
(1978a,b, 1982) computed the evolution of an accreting white dwarf
including the detailed chemistry of many Urca pairs. He realized that
the turn-over time-scales would be of the same order as the chemical
time-scales for the Urca reactions. This, he concluded, implied that
the mixing processes caused by the growth of the convective core
would affect the heating/cooling by the Urca process. However,
numerical problems caused by his treatment of the mixing prevented
him from following the computations up to the thermal runaway.

Barkat & Wheeler (1990) revisited the problem of the convective
Urca process and provided a clear summary of the convective Urca
mechanism, although later Mochkovitch (1996) and Stein, Barkat &
Wheeler (1999) pointed out a mistake in their treatment and argued
that more attention needs to be paid to the kinetic energy of con-
vection. Bisnovatyi-Kogan (2001) showed that the feedback of the
Urca process on convection itself should be taken into account. As
this summary shows, a consistent picture of convection that properly
treats the chemistry is still missing and is badly needed in order to
address the problem of the convective Urca process.

Such a theory for chemistry coupled with convection was at-
tempted by Eggleton (1983) with the help of a ‘simple rule-of-
thumb procedure’. Later, Grossman, Narayan & Arnett (1993) pro-
duced a physically consistent model of convection, which includes
chemistry based on a statistical approach for the convective blobs.
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However, their model did not necessarily conserve energy and has
only been checked without chemistry.

Here we devise a model for convection that ensures energy con-
servation. We start with the conservation equations of radiation hy-
drodynamics in a spherical configuration. Using a simple geome-
try, which mimics convective rising plumes, we derive a physically
self-consistent model of convection that includes time-dependent
chemistry. We then compare this formalism to previously derived
models of convection. In the process we obtain a model for the
convective Urca process that addresses all the problems mentioned
above: nuclear heating, mixing, convective work, kinetic energy
and the feedback of the Urca process on convection. To illustrate
the formalism, we apply it to stationary convective Urca regions and
show how it affects the energy budget, the convective properties and
the chemical stratification. In a follow-up paper, we plan to apply
the formalism in a realistic, time-dependent stellar model, coupled
with a complete nuclear reaction network, to determine the ignition
conditions for the thermonuclear runaway in a SN Ia.

In Section 2 we derive the basic equations for the two-stream
formalism and suggest a simple model for the exchange of matter,
momentum and energy between rising and descending flows. In
Section 3 we compare our model to existing models of convection.
In Section 4 we describe the convective Urca process in view of our
model. In Section 5 we compute stationary Urca convective cores.
We discuss and summarize our results in Sections 6 and 7.

2 T WO - S T R E A M F O R M A L I S M
F O R C O N V E C T I O N

Cannon (1993) designed a two-stream algorithm to post-process the
evolution of chemical species in convective regions. This model was
well suited to the study of convective regions in which the chemical
time-scales were shorter than the convective turn-over time-scales.
However, as a post-processing algorithm, it did not tackle the feed-
back effects the chemistry could have on the convection. Here we
extend his ideas to all state variables in the two streams and explore
the interactions between mass, energy, momentum and chemical
transfers between the streams.

Let us consider a sphere of gas with purely radial velocities and
stratified properties. We assume that, on a shell of radius r, there are
two different velocities associated with the two streams. We further
assume that, on this shell, all gas parcels moving with a given veloc-
ity have the same state, and they have homogeneous temperature,
pressure and chemical composition. Fig. 1 schematically shows the
geometrical configuration we have in mind.

One of the two velocities has to be greater than the other, and we
refer to the gas moving with this velocity as the upward moving gas,
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Figure 1. Geometrical configuration of the two streams.

even though both velocities could be negative in principle. We write
the two velocities as v + vu and v − vd, where vu and vd are both
positive and are associated with the upward and downward moving
fluid, respectively. The ambient velocity v will be defined further
below.

We now affix suffixes ‘u’ to upward moving fluid properties and
‘d’ to downward moving fluid properties. We assume that the sound-
crossing time of a horizontal section of one stream is short compared
to any other time-scale. Hence, we make the approximation that the
pressure p = pu = pd is the same in the upward and downward
moving fluids. The state of the gas in both fluids is now completely
determined by the temperatures T u and T d and abundance vectors
Nu and Nd (number of particles per unit mass), provided we know
the equation of state of the gas. The latter equation provides the
mass densities ρ u(p, T u, N u) and ρ d(p, T d, N d), and the specific
energies eu and ed, along with the radiative volumic energies Eu and
Ed.

We define Su and Sd as the areas of the surfaces occupied by the
two fluids at the shell of radius r. Therefore

S = Su + Sd = 4πr 2 (1)

and we define the velocity v by setting the mass flow

ṁ = Suvuρu = Sdvdρd. (2)

This defines v as the radial velocity of the centre of a mass shell.
The net mass flow through the shell moving at velocity v is zero.

We now write the equations for the variation of mass, momen-
tum and energy for each of the two fluids and define the exchange
terms. We then compute the equations for the average fluid and
the specific equations of evolution for both fluids, before comput-
ing the differential evolution between the two fluids. Finally, we
propose a very simple model for the exchange terms between the
streams.

2.1 Conservation equations

We consider the mass, momentum and energy on a shell at radius
r for each of the two fluids. This allows us to define the exchange
terms in a conservative way and makes it easier to derive the mean
equations. Moreover, with this approach the specific exchange terms
can be defined more rigorously.

The viscosity of the fluid is neglected as well as the molecular dif-
fusion. All horizontal effects are implicitly included in the exchange
terms.

2.1.1 Mass

To simplify the derivation, we neglect the mass changes due to
the nuclear transformations and assume that mass is perfectly con-
served. We treat the corresponding nuclear energy production only
in the energy equation. The rate of change of mass is hence equal
to the sum of the mass flux in the radial direction and sideways

∂

∂t
(Suρu) = − ∂

∂r
[Suρu(v + vu)] + Ṁ, (3)

and

∂

∂t
(Sdρd) = − ∂

∂r
[Sdρd(v − vd)] − Ṁ, (4)

where Ṁ represents the mass per unit radius and unit time exchanged
in the shell from the downward to the upward moving fluid.

C© 2004 RAS, MNRAS 356, 131–144



Formalism for the convective Urca process 133

2.1.2 Momentum

The rate of change of momentum is the sum of the momentum flux
(ram and thermal pressure) in the radial direction and sideways,
added to the gravitational forces where the gravitational potential is
assumed to be spherical:

∂

∂t
[Suρu(v + vu)] = −Su

∂

∂r

[
ρu(v + vu)2 + p

]
− Suρu

Gm

r 2
+ Q̇, (5)

and
∂

∂t
[Sdρd(v − vd)] = −Sd

∂

∂r

[
ρd(v − vd)2 + p

]
− Sdρd

Gm

r 2
− Q̇. (6)

Here, G is the Newton constant of gravitation, m is the total mass
contained inside the sphere of radius r

m =
∫ r

0

(Suρu + Sdρd) dr ′, (7)

and Q̇ is the momentum per unit mass and unit time exchanged in
this shell from the upward to the downward moving fluid.

2.1.3 Energy

The rate of change of energy is the advective plus diffusive energy
flux, in the radial direction and sideways, added to the work of
pressure forces and heat generation:

∂

∂t
(Suρueu) = − ∂

∂r
[Suρueu(v + vu)] − p

∂

∂r
[Su(v + vu)]

− p
∂

∂t
(Su) + Suρu

(
εu − ∂Lu

Suρu∂r

)
+ Ė (8)

and
∂

∂t
(Sdρded) = − ∂

∂r
[Sdρded(v − vd)] − p

∂

∂r
[Sd(v − vd)]

− p
∂

∂t
(Sd) + Sdρd

(
εd − ∂Ld

Sdρd∂r

)
− Ė . (9)

Here, L is the luminosity carried by the conductive and radiative
processes (in the radial direction):

Lu = − Suc

3κu

∂Eu

∂r
(10)

= ρucPuχu
∂Tu

∂r
Su, (11)

and

Ld = − Sdc

3κd

∂Ed

∂r
(12)

= ρdcPdχd
∂Td

∂r
Sd. (13)

Here, E is the radiative energy per unit of volume given by the
equations of state, c is the speed of light, κ is the flux weighted total
opacity for the conductive and radiative processes (in the diffusion
approximation), χ is the thermal diffusion coefficient and cP is the
heat capacity at constant pressure.

The net energy production per unit time and per unit mass is
ε. This can include the nuclear energy production if the rest mass

energy is not yet included in the specific energy, and it includes
the neutrino losses. The energy per unit time and per unit radius
exchanged in the shell from the upward to the downward moving
fluid is Ė .

2.1.4 Chemistry

The rate of change of a species is its flux in the radial direction and
sideways added to its chemical rate of change:

∂

∂t
(Suρu Nu) = − ∂

∂r
[Suρu Nu(v + vu)] + Suρu Ru + Ṅ (14)

and
∂

∂t
(Sdρd Nd) = − ∂

∂r
[Sdρd Nd(v − vd)] + Sdρd Rd − Ṅ. (15)

Here, Ṅ j represents the mass of species j per unit radius and per
unit time exchanged in the shell from the downward moving fluid
to the upward moving fluid, and Rj is the rate of change of species
j per unit time and unit mass due to nuclear reactions.

2.2 Equations for the mean fluid

When we sum up each pair of the above equations we obtain the
equations for the variation of the mean mass, energy and momentum.
We first derive these equations in their volumic form and then gather
them all in a more familiar specific form.

2.2.1 Mass

The mean density ρ is defined by

ρS = ρu Su + ρd Sd. (16)

The equation for mass conservation then reads

∂

∂t
(Sρ) = − ∂

∂r
(Sρv), (17)

which is the unchanged continuity equation for the mean fluid.

2.2.2 Momentum

The mean equation for momentum is more complex and involves
several additional terms
∂

∂t
(Sρv) = −S

∂

∂r
(ρv2 + p) − Sρ

Gm

r 2
+ SρXconv, (18)

where

SρXconv = X1 + X2 + X3, (19)

X1 = −Su
∂

∂r

(
ρuv

2
u

) − Sd
∂

∂r

(
ρdv

2
d

)
, (20)

X2 = −2v

[
Su

∂

∂r
(ρuvu) − Sd

∂

∂r
(ρdvd)

]
(21)

and

X3 = (ρd − ρu)v2

(
Su

S

∂Sd

∂r
− Sd

S

∂Su

∂r

)
, (22)

where we have used equation (1). Usually, the evolution of the star is
quasi-static, which means that v is negligible. Then only X1 should
be retained because X2 and X3 are of order 1 and 2 in v.

X1 accounts for a convective pressure support in the flow. It
slightly changes the hydrostatic equilibrium but is usually negli-
gible in the subsonic regime.
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2.2.3 Energy

We define the mean specific energy as

Sρe = ρu Sueu + ρd Sded (23)

and the mean energy generation per unit mass ε in the same way as

ρε = ρu Suεu + ρd Sdεd. (24)

The radiative and conductive luminosity is given by

L = Lu + Ld. (25)

Then the equation for the mean energy is rather simple and includes
only two additional terms

∂

∂t
(Sρe) = − ∂

∂r
(Sρev) − p

∂

∂r
(Sv)

+Sρ

(
ε − ∂L + Lconv

Sρ∂r

)
+ SρWconv, (26)

where

Lconv = ṁ(hu − hd) = 1

2
Sρu(hu − hd), (27)

Wconv = 1

2
u

(
1

ρu
− 1

ρd

)
∂p

∂r
. (28)

Here h = e + p/ρ is the enthalpy and u = 2ṁ/(Sρ) is the mean
convective velocity.

Note that the convective luminosity Lconv naturally appears as an
enthalpy flux.

The term W conv can be interpreted as the work done by the buoy-
ancy forces. Because the pressure is decreasing upward, and usually
ρ u < ρ d, it always provides a sink term for the energy.

Note that this approach cannot be used to write a general equation
for the entropy because the thermodynamic relations are only valid
for the up and down streams separately but not for the mean fluid.
We will derive an entropy equation later in the one-flow limit (see
Section 4.3).

2.2.4 Chemistry

The equation for the mean abundances is

∂

∂t
(SρN) = − ∂

∂r
(SρNv) + SρR − Sρ

∂

∂m
Fconv, (29)

where

SρN = Suρu Nu + Sdρd Nd (30)

and

Fconv = ṁ(Nu − Nd), (31)

which we interpret as a diffusion flow in Section 2.5.

2.2.5 Mean specific equations

We now summarize all of the mean equations derived in the previous
section in their specific form (i.e. per unit mass), where we use the
notation

Dx

Dt
= ∂x

∂t
+ v

∂x

∂r

and

div(x) = 1

S

∂Sx

∂r
:

1

ρ

Dρ

Dt
= −div(v), (32)

Dv

Dt
− 2

v2

r
= − 1

ρ

∂p

∂r
− Gm

r 2
+ Xconv, (33)

De

Dt
+ p

D

Dt

(
1

ρ

)
= ε − ∂L

∂m
− ∂Lconv

∂m
+ Wconv (34)

and

DN
Dt

= R − ∂

∂m
Fconv (35)

with

Xconv � − 1

Sρ

[
Su

∂

∂r

(
ρuv

2
u

) + Sd
∂

∂r

(
ρdv

2
d

)]
, (36)

Lconv = ṁ(hu − hd), (37)

Wconv = 1

2
u

(
1

ρu
− 1

ρd

)
∂p

∂r
, (38)

and

Fconv = ṁ(Nu − Nd). (39)

These equations are the usual equations of radiative stellar evolu-
tion with additional terms due to the differential motions in the two
fluids. The latter terms depend on the convective velocities vu and
vd, as well as on differences between quantities in the two flows.
We derive equations for the mean convective velocities and those
differences in the one-flow limit in Section 2.4.

2.3 Specific equations

We first rewrite the conservation equations in their specific form.
This will allow the derivation of the equations in the one-flow limit
when we take the difference between the specific equations for the
up and down motions.

2.3.1 Momentum

∂

∂t
(v + vu)+(v + vu)

∂

∂r
(v + vu) − (v + vu)2 1

Su

∂Su

∂r

= − 1

ρu

∂p

∂r
− Gm

r 2
+ 1

Suρu
[Q̇ − Ṁ(v + vu)] (40)

and

∂

∂t
(v − vd)+(v − vd)

∂

∂r
(v − vd) − (v − vd)2 1

Sd

∂Sd

∂r

= − 1

ρd

∂p

∂r
− Gm

r 2
− 1

Sdρd
[Q̇ − Ṁ(v − vd)]. (41)

2.3.2 Energy

∂eu

∂t
+ (v + vu)

∂eu

∂r
+ p

[
∂

∂t

1

ρu
+ (v + vu)

∂

∂r

1

ρu

]

= εu − 1

Suρu

∂Lu

∂r
+ 1

Suρu
(Ė − Ṁhu) (42)
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and

∂ed

∂t
+ (v − vd)

∂ed

∂r
+ p

[
∂

∂t

1

ρd
+ (v − vd)

∂

∂r

1

ρd

]

= εd − 1

Sdρd

∂Ld

∂r
− 1

Sdρd
(Ė − Ṁhd). (43)

2.3.3 Chemistry

∂Nu

∂t
+ (v + vu)

∂Nu

∂r
= Ru + 1

Suρu
(Ṅ − Ṁ Nu) (44)

and

∂Nd

∂t
+ (v − vd)

∂Nd

∂r
= Rd − 1

Sdρd
(Ṅ − Ṁ Nd). (45)

2.4 Difference equations in the one-stream limit

In the following we make the approximation that the relative dif-
ference of a quantity between the two streams is small. For each
quantity x we write x u = x + �x and x d = x − �x with �x �
x . We note that the previously defined mean convective velocity u
is in fact the arithmetic mean of vu and vd. Hence, we write vu = u
+ �u and vd = u − �u. In contrast, we keep the former definition
for S as the total surface of the shell of radius r so that Su = (1/2)S
+ �S and Sd = (1/2)S − �S. We then compute the difference of
the specific equations (40)–(45) between the two fluids and neglect
second-order terms in the � quantities.

In this approximation, the averages defined in Section 2.2 are all
arithmetic means. We also note that the standard thermodynamic re-
lations hold for the � quantities, which greatly helps when deriving
the entropy equation (see Section 4.3).

Equation (2) yields

2
�S

S
+ �ρ

ρ
+ �u

u
= 0 (46)

and this allows us to eliminate �S in what follows. It can be thought
of as the equation governing the convective motions with u as the
convective velocity.

2.4.1 Mass

Taking the difference between equations (3) and (4) and using equa-
tion (32) we find

D

Dt

(
�u

u

)
= 1

Sρ

∂

∂r
(Sρu) − 2Ṁ

Sρ
. (47)

This equation describes the evolution of the asymmetry �u of the
drift motions relative to the mean velocity v.

2.4.2 Momentum

The difference between equations (40) and (41) yields

Du

Dt
+ u

[
∂(v + 2�u)

∂r
− 4

v + �u

r

]

= �ρ

ρ2

∂p

∂r
− (v2 + u2)

∂

∂r

(
�ρ

ρ

)

−v2 ∂

∂r

(
�u

u

)
+ 2

Sρ
[Q̇ − Ṁ(v + 2�u)]. (48)

This equation describes the time evolution of the convective velocity
u. The main source term is the acceleration due to the buoyancy force
while the main sink term comes from the momentum exchange term
between the two flows.

Apart from the �u terms

−(v2 + u2)
∂

∂r

(
�ρ

ρ

)
is the only non-local term, i.e. it is the only term that involves spatial
derivatives of convective properties.

2.4.3 Energy

The difference between equations (42) and (43) yields

D�e

Dt
− p

D

Dt

(
�ρ

ρ2

)
+ u

(
∂e

∂r
+ p

∂

∂r

1

ρ

)

= �ε + 2
�u

u

∂L

∂m
+ 2

∂�L

∂m
+ 2

Sρ
(Ė − Ṁh). (49)

This equation implicitly determines the time evolution of the tem-
perature difference between the two flows, as we show in Section
3.1. Note that the �ε term may help to either increase or decrease
such a temperature difference, depending on the temperature de-
pendence of the energy generation rate. The other non-local term in
the energy equation, 2(∂�L/∂m), accounts for differential thermal
diffusion along the two columns of fluid.

2.4.4 Chemistry

The difference between equations (14) and (15) yields

D�N
Dt

+ u
∂N
∂r

= �R + 2

Sρ
(Ṅ − Ṁ N). (50)

This equation describes the evolution of the chemical composition
difference between the two flows. In some situations, the tempera-
ture dependence of the nuclear reaction rates may affect this differ-
ence through the �R term.

2.5 Model for the exchange terms

All horizontal motions and transport phenomena are modelled
through the exchange terms. These need to be specified to close the
two systems of equations (32)–(35) and (47)–(50). With these, the
equations provide a complete time-dependent model for convection
which guarantees the conservation of mass, momentum, energy and
chemical transformations. Most of the existing convective models
provide approximations for these exchange terms. Here we present
a simple, somewhat ad hoc, but physically plausible choice for these
exchange terms:

Q̇ = −(vu + vd)ṁ/λ + Ṁv, (51)

Ė = (hd − hu)ṁ/λ + β
χ

uλ
cp(Td − Tu)

ṁ

λ
+ Ṁh, (52)

and

Ṅ = (Nd − Nu)ṁ/λ + Ṁ N. (53)

The first terms in these expressions account for momentum, energy
and chemical exchanges without any net transfer of mass. They
are designed to mix the two fluids on a length-scale λ. The second
term in the energy exchange equation (52) accounts for horizontal
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heat diffusion across the edges of the streams. The parameter β is
a form factor which fixes the ratio of the perimeter of the streams
to their separation times S/λ2. We use β = 9/2 to recover the exact
formulation of classical mixing length theory (MLT; Böhm-Vitense
1958, as presented in Kippenhahn & Weigert 1990). The last terms
in expressions (51)–(53) are the fluxes due to a net transfer of mass
Ṁ from one stream to the other. Such transfer must exist at the outer
boundaries of a convective zone where the fluid effectively makes
a U-turn.

There is no obvious, simple physical prescription for Ṁ so we
make the assumption that u = vu = vd and convective motions are
symmetric with respect to the mean velocity v. This approximation
is in fact implicit in almost all convective models to date. The term
Ṁ is then given by equations (2)–(4) as

Ṁ = ∂ṁ

∂r
. (54)

We now have a complete time-dependent description of the convec-
tive properties of the flow and can investigate the characteristics of
this model.

3 C O M PA R I S O N W I T H E X I S T I N G
M O D E L S F O R C O N V E C T I O N

In this section we consider the approximations made in a number of
theories of convection. Using the same assumptions, we derive the
equations for the convective motions in our framework and empha-
size the characteristics that are peculiar to our formalism.

3.1 Mixing length theory

MLT assumes a stationary state for convection and makes the quasi-
static approximation, v � 0. In this case, all D/Dt terms can be set
equal to zero in the difference equations. In addition, we set �u, �ε,
�L and �R to zero because the processes that lead to these terms
are usually neglected in MLTs. We also neglect the non-local term in
the momentum difference equation. The difference equations then
simplify to

�ρ

ρ2

∂p

∂r
= 2

u2

λ
, (55)

∂e

∂r
+ p

∂

∂r

1

ρ
= −2

�h

λ
− 2β

χcp�T

uλ2
(56)

and

∂N
∂r

= −2
�N
λ

. (57)

Note that equation (55) is not exactly the same as in classical
MLT: there is usually a factor of 1/2 multiplying the left-hand side
of this equation to account for the fact that half of the work done by
the buoyancy force is used to push aside the surrounding medium
when a convective element rises.

From these equations we extract the convective velocity, the tem-
perature and chemical differences between the two streams (see
Appendix A1.1 for a detailed derivation). These can now be used to
express the convective terms in the mean equations

Xconv = − 1

ρ

∂

∂r
(ρu2), (58)

ṁ = 1

2
Sρu, (59)

Lconv = ṁ(cp�T + µ′ · �N), (60)

Wconv = −u3

λ
(61)

and

Fconv = 2ṁ�N (62)

where µ′ = T (∂s/∂ N)T,p + µ and µ is the chemical potential (see
Appendix A1.1).

With these equations, we have derived a MLT that is consis-
tent with chemistry. While the excess temperature equation is
unchanged, the convective velocity now depends on the chemi-
cal stratification (through the cubic A5) and so does the convec-
tive luminosity. There is also an additional work term due to the
fact that we assume a reversible process for the momentum ex-
change (see Section 3.3). We also obtain an explicit change in
the condition of hydrostatic equilibrium owing to convection. Fi-
nally, convection naturally appears as a diffusion process for the
chemistry.

3.2 Unno (1967)

If we include the D/Dt terms in equations (55) and (56) and fur-
ther neglect the chemistry dependence of the convective luminosity
and velocity, we immediately recover the same time-dependent ver-
sion of MLT as Unno (1967) for the excess temperature and the
convective velocity.

3.3 Kuhfuss (1986)

Kuhfuss (1986) only computes the evolution equation for the con-
vective velocity. He uses a diffusion model to compute the corre-
lations between velocity perturbations and any other perturbation.
This model is recovered in our formalism if we set D/Dt ≡ 0 and
�R = �ε = �L = 0 in the difference equations for energy and
chemistry.

Furthermore, each term of his equation (25c) for the convective
kinetic energy corresponds to one term in our equation (48), except
that his non-local term (1/〈ρ〉) div j t is different from ours (see Sec-
tion 3.5), and we do not account for his viscous terms (we assumed
an inviscid fluid).

Finally, if we compare our equation for the average internal energy
of the gas, we note that our model misses the heat production owing
to dissipation of convective motions. This is due to the fact that
we assume a reversible exchange of momentum so that there is no
associated heat production. In contrast, Kuhfuss (1986) assumes
viscous dissipation for the convective motions.

3.4 Eggleton (1983)

Eggleton (1983) uses his rule of thumb to average the hydrodynam-
ical equations in order to obtain evolution equations for the mean
fluid and the perturbed quantities. He then obtains a full set of equa-
tions that can be identified with our mean and difference equations.
Our formalism agrees fairly well with this rule of thumb and hence
provides a more physical basis for it.

We can recover almost the same equations if we set �u = 0. The
local models differ only in the mean energy equation because Eggle-
ton neglects the thermal part of the chemical potentials. However,
those terms are important when beta decays or electron captures
occur in degenerate matter.
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As for the non-local terms, ∂�L/∂m in the energy difference
equation takes the same form of the term in equation (41) of
Eggleton (1983) which accounts for the thermal diffusion through
the front and back of the eddies. However, our non-local term in the
momentum difference equation does not agree with equation (42)
of Eggleton (1983) for the velocity perturbation.

An interesting point is that Eggleton (1983) found a term similar to
our �R term. We have shown that an additional term �ε enters into
the energy equation. These terms account for differential reactivity
in the two streams. However, our stationary computations show that
these effects are negligible as far as the convective Urca process is
concerned (see Section 6).

3.5 Grossman et al. (1993)

Grossman et al. (1993) use the Boltzmann equation coupled with
dynamical equations to compute a hierarchy of moments for the
hydrodynamical equations. In their framework, our formalism can
be recovered if we specify the distribution function of the blobs as

f A(t, z, v, T ) = 1

S
[Suρuδ(v + vu, Tu) + Sdρdδ(v − vd, Td)]. (63)

This allows a direct comparison between the two formalisms. With
this definition, our variables v, ρ and T correspond to their variables
v̄, ρ̄ and T̄ .

The zeroth-order equations of their hierarchy can be directly com-
pared with our mean equations. The velocity equation is found to
differ by terms negligible in the subsonic regime. Their temperature
equation without chemistry has an additional source term due to vis-
cous dissipation just as Kuhfuss (1986). Their temperature equation
with chemistry misses correction terms in the luminosity, the work
term and the source term. This is due to their use of a dynamical
equation for the entropy which does not account for the changes ow-
ing to chemical evolution. This suggests that energy conservation
may not hold in their case when chemistry is included.

Their higher-order equations can also be compared with our dif-
ference equations, although this is less straightforward. We made
such a comparison but only for the velocity difference equation.
We then obtain the same non-local term as Kuhfuss (1986): their
(1/ρ̄)(∂/∂z)(ρ̄w̄3) corresponds to (1/〈ρ〉) div j t of Kuhfuss (1986).
If we substitute our distribution function fA in this term, we obtain

2

ρ

∂

∂z
(ρu2�u), (64)

which should be compared to our

2u2 ∂�u

∂r
+ u3 ∂

∂r

�ρ

ρ
(65)

when v = 0. Our term contains �ρ and theirs contains the spatial
derivative of the convective velocity. On the other hand, our treat-
ments agree as far as the chemical dependence of the convective
velocity is concerned.

4 C O N V E C T I V E U R C A P RO C E S S

In this section we first present the basic nuclear reactions respon-
sible for the Urca process. Because previous studies have mainly
concentrated on the entropy equation, we derive it in our formalism
and then examine the influence of the Urca nuclei on convection.

4.1 Urca reactions

Urca reactions involve pairs of nuclei of the form (Z+1
A M,Z

A D) where
A is an odd number. The member of a pair with an additional proton

is called the mother (M), while the other one is referred to as the
daughter (D). Electron capture and beta decay turn one into the
other:

electron capture: M + e− → D + ν (66)

beta decay: D → M + e− + ν̄. (67)

Tsuruta & Cameron (1970) give the reaction rates for electron
capture and beta decay λ+ and λ− per nucleus. They also provide
the corresponding neutrino losses L+ and L− per nucleus. The typical
time-scale for Urca reactions is 105 s. These reaction rates depend
mainly on the chemical potential µe of the electrons. This is mainly
on the mass density ρ of the degenerate matter. Each Urca pair has a
threshold energy µth above which significant electron captures can
occur. We approximate the Coulomb corrections to these threshold
energies in the same way as Gutiérrez et al. (1996). When µe > µth

(i.e. ρ > ρ th) electron captures quickly turn the Urca matter into
daughter nuclei. When µe < µth (i.e. ρ < ρ th) beta decays quickly
turn it into mother nuclei. When µe � µth(ρ � ρ th) both reactions
are significant and the Urca matter quickly evolves into a mixture
of mother and daughter nuclei. A shell on which ρ = ρ th is called
an Urca shell.

When the Urca matter is in chemical equilibrium both reactions
take place at the same rate, which is highest near the location of
the Urca shell. Because both reactions emit neutrinos, this leads
to neutrino cooling which is strongest at the Urca shell. When the
Urca matter is far from equilibrium, nuclear heating takes place at
the same time and usually dominates over the neutrino cooling (see
Bruenn 1973, and Section 4.3.1).

The pair 23Na/23Ne is a typical example and perhaps the most
active Urca pair in massive white dwarfs. Its threshold energy is
µth = 4.38 MeV, which corresponds to ρ th = 1.7 × 109 g cm−3 in
purely degenerate matter. This density is slightly below the density
for carbon ignition in a C+O white dwarf accreting at a rate of
10−7 M	 yr−1. As a consequence, the growing convective core
soon engulfs the corresponding Urca shell after carbon has ignited
in the centre.

Here we assume that the stellar matter contains a fixed number
N U of Urca nuclei (per unit mass) of a given pair. We define N M

and N D as the corresponding number of mother and daughter nuclei
so that N U = N M + N D. Then the rate of change of mother and
daughter nuclei per unit mass becomes

RM = −RD = −λ+ NM + λ− ND. (68)

If we write N ∗
M = N Uλ−/(λ+ + λ−) = N U − N ∗

D as the number of
mother nuclei per unit mass at chemical equilibrium, we can rewrite
the reaction rate as

RM = −(λ+ + λ−)
(

NM − N ∗
M

)
. (69)

Useful explicit expressions for the various thermodynamical
properties of the Urca nuclei are

µM = (Z + 1)µe + kT (a + ln NM), (70)

µD = Zµe + kT (a + ln ND), (71)

µ′
M � (Z + 1)µe + 1

2
kT , (72)

µ′
D � Zµe + 1

2
kT , (73)

µ′′
M = −(Z + 1)NM/Ne (74)
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and

µ′′
D = −Z ND/Ne, (75)

where N e is the total number of electrons per unit mass, k is the
Boltzmann constant and a is a combination of temperature and den-
sity logarithms (see Pols et al. 1995). The approximations for µ′

M

and µ′
D are obtained by neglect of the electron and radiation contri-

butions to the entropy. In the strongly degenerate case, the kT terms
are usually negligible.

4.2 Convective velocity

In Appendix A (equation A8) we derive the approximation which
relates the convective velocity to the temperature and chemical gra-
dients

u = u1

√
δ(∇ − ∇a) − µ′′ · ∇N , (76)

where the term depending on the Urca process is

µ′′ · ∇N = − 1

Ne
[(Z + 1)NM∇M + Z ND∇D]. (77)

Since N U is assumed to be uniform, N M∇M + N D∇D = 0. Hence,
relation (77) becomes

µ′′ · ∇N = − NM

Ne
∇M. (78)

Electron captures are much stronger in the centre of the star than
in the outer regions, so the mother fraction generally increases out-
wards, µ′′ ·∇ N > 0 and the effect of the presence of Urca pairs is
to reduce the convective velocity. In Sections 4.4 and 5 we show
that this effect can actually be quite strong and may even inhibit
convection. Note that, in the case where N U is not uniform, the sign
of the µ′′ ·∇ N term may change.

4.3 Entropy equation

One of the biggest uncertainties in previous models for the convec-
tive Urca process was the form of the equation for the evolution
of the entropy s in the presence of convection. Here we derive the
entropy equation in the one-flow limit. The small � approximation
allows us to use thermodynamic relations for the mean fluid and we
can transform the left-hand side of equation (34) so that

T
Ds

Dt
+ µ

DN
Dt

= ε − ∂L

∂m
− ∂Lconv

∂m
+ Wconv. (79)

We then use equation (35) and the relation �h − µ·�N = T �s
(because �p = 0) to write the equation for the mean entropy as

T
Ds

Dt
= ε ′ − ∂L

∂m
− ∂L ′

conv

∂m
+ W ′

conv, (80)

where we define

ε ′ = ε − µ · R, (81)

L ′
conv = 2ṁT �s (82)

and

W ′
conv = Wconv − 2ṁ�N · ∂µ

∂m
. (83)

The entropy equation then takes a form that is similar to the energy
equation but with different definitions for the net heating, the con-
vective luminosity and the work. We next consider how these terms
are affected by the chemical state of the Urca matter.

4.3.1 Net heat generation

The net heating due to Urca reactions is

ε ′
U = µth RM − L+ NM − L− ND − µM RM − µD RD. (84)

In the very degenerate case, µM � (Z + 1)µe and µD � Zµe, we
obtain

ε ′
U = NUC + (NM − N ∗

M)H , (85)

where

C = − L+λ− + L−λ+

λ+ + λ− (86)

H = −L+ + L− + (µe − µth)(λ+ + λ−). (87)

In Fig. 2 we plot |C| and |H| for the Urca pair 23Na/23Ne. The net
Urca heating εU

′ is the sum of two terms. At chemical equilibrium,
only the first term remains. This is always negative and so causes
cooling. The sign of the second term depends on the signs of N M −
N∗

M and H. The term N M − N∗
M is likely to be positive below the

Urca shell and negative above it. The value of H has the same sign
except close to the Urca shell. Hence, the second term (N M − N∗

M)H
is positive, implying heating, except close to the Urca shell.

The relative magnitude of the second to the first term is propor-
tional to the departure from chemical equilibrium (N M − N ∗

M)/N U.
It can be seen from Fig. 2 that the heating can be balanced by
neutrino losses only if the system is close to chemical equilibrium
because, generally, |H | � |C |. In a convective region mixing puts
the Urca abundances slightly (or strongly if convection is very ef-
ficient) outside equilibrium. The amount of convective mixing is
therefore crucial for computing the net Urca heating. Generally, the
net effect is cooling close to the Urca shell and heating far away
from it.

4.3.2 Convective luminosity

The contribution to L′
conv associated with the Urca pairs is

L ′
U = 2ṁ(µ − µ′) · �N = 2ṁkT ln (ND/NM)�NM. (88)

The quantity one needs to compare with ε ′
U and W ′

conv is in fact
the mass derivative of the luminosity ∂L ′

U/∂m. This term is usu-
ally negligible in the very degenerate case. However, at convective

C

H

Figure 2. Functions |H| (solid and dotted lines) and −C (dashed line) for
the 23Na/23 Ne Urca pair at a temperature of 3 × 108 K. The solid portions
of |H| indicate where H and N M − N∗

M have the same sign (heating), and
the dotted portions otherwise (cooling).
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boundaries, the derivative ∂ṁ/∂m can be large and can make this
term relatively more important.

4.3.3 Work term

Here we compute the contribution of the Urca pairs to the work term
in the entropy equation

W ′
U = 2ṁ� N· ∂µ

∂m
= 2ṁ�NM

∂µe

∂m
. (89)

Because the Urca matter is richer in mother nuclei in the outer
parts of the star, �N M > 0, and because the density is decreasing
outwards, µe is decreasing outwards. Hence, W ′

U is always negative.
We note that W ′

U = F M(∂µe/∂m) is identical to the work term
Iben (1978b) designed for his computations, although he uses it in
the energy equation and does not specify what convective velocity
or luminosity he adopts.

Finally, no heat production is associated with our chemical ex-
change model. Indeed, we assume that a reversible process is re-
sponsible for the mixing of chemical species between both streams.
An irreversible process for this chemical mixing could give rise to
a heating term which could balance part (or all) of this additional
work term.

4.4 Criterion for convection at the centre of the star

Let us now assume that we know the composition, temperature and
density at the centre of a star. We can then derive a criterion for
whether there is stationary convection and deduce an upper bound
to the amount of mixing at the centre of a convective Urca core.

We consider a very small sphere of mass m at the centre of the
star. In a stationary state, the total luminosity at the edge of this
sphere must balance the energy production inside the sphere. If we
assume that all the energy is carried out by convection we can write
the convective luminosity

εm = Lconv = 2�hṁ = 2(cpT � ln T + µ′ · �N)ṁ. (90)

We obtain a similar expression for the net number of particles of
each kind flowing away from this sphere

Rm = Fconv = 2�Nṁ. (91)

Combining these two equations we obtain the density difference
at the edge of the sphere

� ln ρ = m

2ṁ

(
−δ

ε − µ′ · R
cPT

+
∑

j

µ′′
j R j

N j

)
. (92)

A stationary convective state exists at the centre if and only if
�ρ < 0. This translates into an upper limit for the mother fraction
at the centre of an Urca convective core. Using the relations µ′

j �
Zjµe and µ′′

j = −ZjNj/N e, where N e is the number of electrons per
unit mass, we obtain

NM − N ∗
M < δ

ε∗

cPT

(
λ+ + λ−

Ne
− δH

cPT

)−1

= NL = AXL, (93)

where ε∗ is the net heating at Urca chemical equilibrium (equal to
the heating from carbon burning at the centre) and N L and XL are
defined by equation (93). XL is the minimum mass fraction of Urca
pairs which has a significant effect on convection. It generally has
a fairly small value (see Fig. 3).

When N U � N L the Urca pairs must be close to chemical equi-
librium. In other words, the convective core can be only very slightly

Figure 3. XL (solid line) and ρ (dotted line) against µe − µth for the
23Na/23 Ne Urca pair at a temperature of 3 × 108 K.

mixed. However, if they were in chemical equilibrium, carbon burn-
ing alone would produce a large buoyancy and hence drive strong
mixing. Therefore, the Urca composition has to adjust itself to bal-
ance the heat from carbon burning and produce almost zero con-
vective velocities. Hence, the inequality (93) is nearly an equality
in practice and N M − N ∗

M � N L, a result that is verified in our
simulations of stationary convective cores (see Section 5.3).

5 S TAT I O NA RY C O N V E C T I V E U R C A C O R E S

If we set all ∂/∂t derivatives equal to zero in equations (3)–(15),
we obtain a system of coupled ordinary differential equations. If
we specify the state variables at the centre of the star, we can integrate
these equations outward, using a shooting method, and calculate
the hydrostatic profile of the star.

To obtain a guess for the state variables at the centre, we run a very
simple time-dependent model of an accreting white dwarf without
Urca nuclei. We then compute the stationary state of stationary con-
vective cores for different Urca compositions and different versions
of our convective model.

5.1 Time-dependent model

We used the Eggleton (1971) stellar evolution code to calculate the
evolution of a white dwarf, composed entirely of 12C, 16O and 20Ne
(with mass fractions 12C = 0.25, 16O = 0.73 and 20Ne = 0.02)
accreting matter at a rate of 10−7 M	 yr−1. The initial mass was
taken as 1 M	. Only the carbon-burning reaction 12C(12C,α)20Ne
immediately followed by 12C(α,γ )16O was taken into account. The
convective model used in the Eggleton code is standard MLT and we
use the approximate equation of state of Pols et al. (1995) assuming
complete ionization.

We stop the computation during the carbon flash when the con-
vective core has reached a mass of 0.4 M	. We plot the convective
velocity of this core against mass in Fig. 4. At this point, the thresh-
old density for the 23Na/23Ne Urca pair is in the middle of the
convective core. The central density is 2.6 × 109 g cm−3 and the
central temperature is 3.1 × 108 K.

If we were to integrate the equations of hydrostatic equilibrium
from this central state using MLT, we would obtain a fully convec-
tive star. The reason is that the core is actually being heated and
that the term T (Ds/Dt) is non-zero. This term is negligible in the
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Ds
Dt

T

Stationary model

Time-dependent model

Figure 4. Convective velocity profile through the core. The solid line is
for the time-dependent simulation and the dashed line is for the hydrostatic
simulation. We also plot T (Ds/Dt) in the time-dependent simulation (dotted
line).

carbon-burning region but is significant in the outer part of the con-
vective region. However, the effect of convection is to homogenize
the entropy profile and so T (Ds/Dt) is rather uniform in the con-
vective region. We can therefore use its value to offset the nuclear
heating when we compute the hydrostatic profile. This brings the
stationary convective profile very close to the time-dependent one
(see Fig. 4).

5.2 Shooting method

Setting all the ∂/∂t terms to zero in the equations for the two streams,
we obtain a system of coupled ordinary differential equations, which
we integrate numerically from the centre of the star. As central
boundary conditions for temperature, density, C, O and 20Ne mass
fractions we take the results of the time-dependent model. For each
value of N U, we make an initial guess for the number density N M.
The estimate for N M is then iteratively improved by successive out-
ward integrations until the condition �N M = 0 is satisfied at the
outer edge of the convective region.

5.3 Results

We compute stationary convective cores for different mass fractions
of Urca pairs X U = 23 × N U = 0, 10−12, 10−9, 10−8, 10−6 and 10−3.
A value of X U = 10−3 would require a very efficient conversion of
20Ne into Urca pairs and hence gives a reasonable upper limit for
the possible abundance of Urca pairs.

5.3.1 Without Urca nuclei

For a pure C+O+20Ne mixture, we compare the velocity profiles
of the stationary convective core given by MLT and the two-stream
model (TSM). In the TSM, we first set the work term W conv equal to
0. Fig. 5 shows that the velocities differ by a factor of

√
2. This is the

only difference between the two models and it can be traced back
to the factor 2 in equation (55). Indeed, MLT has a factor 4 instead
because it assumes that half of the work done by the buoyancy forces
is used to push aside the surrounding medium when a convective
element rises.

TSM (work)

TSM (no work)

MLT (work)

MLT (no work)

Figure 5. Convective velocity profile of different models of stationary cores
without Urca nuclei. Solid and dashed lines are for MLT and TSM models
with viscous dissipation of momentum. Dotted and dash-dotted lines are for
MLT and TSM models with the work term W conv.

When we put the work term back in MLT or TSM, the resulting
convective core shrinks. Less convection is needed to carry out the
carbon-burning energy. This is not surprising because adding the
work term is equivalent to suppressing the viscous heat produced
by the dissipation of the drift motions.

5.3.2 Very low Urca abundance

For X U < 10−9, the Urca nuclei do not have an impact on the
convective velocity. They are mixed passively through the convec-
tive region. Fig. 6 shows the relative abundance of mother nuclei
N M/N U in both streams. Mother nuclei come from above the Urca
shell. They capture electrons as they descend below the Urca shell
and are converted into daughter nuclei. As these rise back above the
Urca shell, they emit electrons and the number of daughter nuclei
rises again. Finally, they cycle back down through the Urca shell.

The maximum relative difference of composition between both
fluids is 17 per cent. This suggests that the one-stream approximation
may well be adequate.

mean

Downward moving fluid

Upward moving fluid

Figure 6. Fraction of mother nuclei N M/N U against mass in the upward
and downward moving streams for X U < 10−9. The mean is also indicated.
The model is the TSM including the work term.
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Figure 7. Convective velocity profile of different models of stationary cores
with Urca nuclei. The different values for XU (the total mass fraction of Urca
nuclei) are indicated next to each curve.

5.3.3 High Urca abundance

For X U > 10−8 � X L our shooting method is not able to find a
stationary state. When the mother mass fraction at the centre is too
high the relative composition difference diverges as the convective
velocity tends to zero. When it is too low the convective velocity
reaches a minimum and then rises again up to the edge of the white
dwarf. Fig. 7 shows the convective velocity profiles in the latter
case and demonstrates how drastically the Urca nuclei can affect
the velocity profile.

We illustrate this effect by plotting the density difference � ln ρ

in Fig. 8 for a case where XM at the centre is too low. Indeed, the
density difference controls the buoyancy force and hence the con-
vective velocity. This figure shows the competing dependence of
� ln ρ on the temperature and on the chemistry (the Urca nuclei).
As was previously noted in Section 4.2, the chemical part of the
density difference is positive and stabilizes convective motions. In
the outer parts of the convective region, the temperature and chem-
ical dependence cancel each other to yield a very small convective
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Figure 8. Density difference � ln ρ through the convective core for a low
central mother fraction case. � ln ρ = −δ� ln T +µ′′ ·� ln N. It is the sum
of a temperature-dependent term and a chemistry-dependent term. We plot
−δ� ln T (solid line), µ′′ ·� ln N (dashed line) and � ln ρ (dotted line).

dL’
dm

ε’U

UW

U

’

Figure 9. Quantities ε′
U (solid), ∂L ′

U/∂m (dotted) and W ′
U (dashed) are

plotted for a low central mother fraction case of model X U = 10−3 (TSM
with work term). The total net energy generation rate is greater than 5 ×
104 erg g−1 s−1. It is dominated by the energy generation due to carbon
burning.

velocity. This suggests that the criterion for semiconvection might
be fulfilled in the region just above the point where u vanishes.

In degenerate matter the mass density is tied to the electron abun-
dance. Hence, all reactions that change the number of electrons have
an effect on the buoyancy. The terms εU, ∂L ′

U/∂m and W ′
U seem to

be of secondary importance compared to the change in the convec-
tive velocity. We plot them in Fig. 9. They are relatively unimportant
compared to the energy generation rate due to carbon burning.

6 D I S C U S S I O N

In principle, the formalism we have derived is sufficiently general
that it can be used with any model for the exchange (or diffusion)
between the two streams. It automatically guarantees conservation
of the chemical species and energy and allows time dependence.
The formalism also accounts for the interactions between the global
contraction or expansion (with velocity v) of the star and the con-
vective (or drifting) velocity u. In fact, the drifting velocities for the
upward and downward motion (vu and vd) do not even have to be
equal.

However, it is only a formalism and requires a model for all
horizontal motions/exchanges. In Section 2.5 we suggested a model
that is easy to implement and which can be used to compare our new
formalism with previously derived theories of convection. However,
this has a few limitations.

First, we used a very simple model (where �u was set equal to
zero) for the net mass transfer Ṁ between the upward and down-
ward moving fluids. This eliminates the main non-local terms in-
volving �u in equation (48) and hence disables the effects of convec-
tive overshooting. To account for overshooting in a self-consistent
way requires an a priori physical model for the exchange term Ṁ .
However, one can investigate the effects of overshooting within our
framework by using a necessarily somewhat ad hoc prescription
for the convective velocity, which allows a finite convective speed
beyond the formally convective region according to the Ledoux
criterion.

Secondly, we chose reversible processes for the exchange of mo-
mentum and the mixing of chemical species. Irreversible processes
would dissipate part (if not all) of the work done as heat. The cooling
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terms W conv and W ′
U would then have lower (possibly zero) values.

For example, the Reynolds numbers in convective regions are so
large that there is almost certainly a large amount of turbulence. To
account properly for turbulent dissipation in the derivation of our
model would require the inclusion of a finite viscosity introduced by
the turbulent cascade. This is not easily done. However, one can in-
vestigate the possible outcome of dissipation by switching the work
terms on and off. In Section 5.3.1 (Fig. 5), we investigated the effect
of setting W conv = 0 and found differences of up to 20 per cent.
Furthermore, setting W ′

U = 0 would most likely only have a small
effect because W ′

U is already small.

6.1 Stationary cores

As a first illustration of our two-stream formalism we computed sta-
tionary convective cores. However, the convective core during the
carbon flash grows very rapidly. Indeed, the time dependence does
matter at least in the energy equation, as was shown in Section 5.1.
Our stationary cores may therefore only be very rough approxima-
tions of growing convective cores. Moreover, in the present study we
used arbitrary abundances for the Urca nuclei. Most of the Urca nu-
clei are byproducts of carbon burning. To compute their abundances
in a self-consistent manner involves quite an extended network, as
was shown by Iben (1978a).

Despite these limitations, the results already help to shed some
light on the convective Urca process and prove useful in calibrating
numerical aspects in the implementation of the method. For exam-
ple, the terms �R, �ε and �L, as well as the non-local term in
equation (48), are found to be second-order terms in our compu-
tations of stationary Urca cores. Furthermore, the chemical com-
position differences between the two streams are generally small,
except possibly at the outer edge of a convective core with a high
Urca abundance. This may provide some justification for the use
of the one-stream approximation to describe the convective Urca
process in a stellar evolution code.

6.2 Future work

The next step is to implement the TSM (or a more simple but ap-
propriate approximation) in a stellar evolution code. Coupled with
a suitable nuclear reaction network, this will allow us to follow the
evolution of the core in a fully self-consistent manner to the run-
away phase in a SN Ia and to determine the physical and chemical
conditions in the core at the time of the explosion. This will provide
the ignition conditions, the thermodynamic properties and the loca-
tion of the ignition point for explosion calculations (e.g. Hillebrandt
et al. 2004). Moreover, with this tool, we shall be able to system-
atically address the dependence of the ignition conditions on the
overall metallicity, the initial C/O ratio, the white dwarf accretion
rate, the initial mass of the white dwarf, etc.

In this context, we note the importance of the neutron excess at
the time of the explosion. Timmes, Brown & Truran (2003) have
recently emphasized the role of the initial 22Ne abundance, which
they argued was determined by the metallicity, introducing a metal-
licity dependence for SNe Ia. However, the neutron excess itself
is affected by the electron captures and emissions in the simmer-
ing phase preceding the nuclear runaway. If we take as indicative
the Urca abundances derived by Iben (1982, table 4) at the end of
his computations, we can compute the number of additional neu-
trons introduced by the Urca reactions alone on Ne isotopes, nU =
3Y (23Ne) + 5Y (25Ne) = 3.6 × 10−3. The corresponding number of
additional neutrons caused by 22Ne resulting from solar abundances

in the white dwarf progenitor is n	 = 2 Y	 (22Ne) = 2.5 × 10−3.
Hence, the effect of the Urca isotopes of Ne on the neutron excess
can be even larger than that of fossil 22Ne. This provides another
illustration for the importance of a proper treatment of the Urca
process for answering some of the fundamental, unsolved questions
concerning SNe Ia.

7 S U M M A RY A N D C O N C L U S I O N S

We have derived a two-stream formalism which carefully addresses
the energy and chemical budgets in a convective region. In addi-
tion, it allows time dependence and describes the interaction of
convection with the general motions of the star. We illustrated this
formalism with a simple model and compared the resulting theory
of convection to existing theories. We also derived a one-stream
limit approximation which will be easy to implement in a stellar
evolution code as an extension of classical MLT.

We then applied this formalism to the convective Urca process
and derived the entropy equation which has been central to previ-
ous discussions of the Urca process, and computed the convective
velocity. We showed that the net heating effect of the Urca pro-
cess strongly depends on the state of mixing of the convective core,
for which we provide an estimate. Urca reactions generally tend to
reduce the effects of buoyancy. More generally we show that, in de-
generate matter, reactions that change the number of electrons have
a direct influence on the convective velocity.

As an illustration of our model we computed stationary convective
cores. These computations show that, even for a very small Urca
fraction, convective velocities are strongly modified compared to
the case without Urca nuclei. They also show that convective Urca
cores are unlikely to be in a stationary state. Hence, time-dependent
computations with a full nuclear reaction network are needed to
provide the final answer to the question, what is the influence of the
convective Urca process on the ignition conditions in SNe Ia?
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A P P E N D I X A : S TA B I L I T Y A NA LY S I S
O F C O N V E C T I O N

In this appendix we analyse the stationary states of convection when
the evolution of the average quantities is very slow. We first inves-
tigate the possible available stationary states and then study their
linear stability.

In the following we assume that �R = �ε = �L = �u = 0 and
we neglect v and non-local terms in the difference equations.

A1 Stationary states

The radiative state (u = 0) is always a stationary solution of our
equations. The other stationary convective states are solutions of the
system of equations (55)–(57) when u = 0 has already been factored
out. We now compute the solutions of this system and examine their
existence and possible multiplicity.

A1.1 Cubic equation for the convective velocity

Standard thermodynamics gives

∂e

∂r
+ p

∂

∂r

1

ρ
= T

∂s

∂r
+ µ · ∂N

∂r

= T cp

(
∂ ln T

∂r
− ∇a

∂ ln p

∂r

)
+ µ′ · ∂N

∂r

= − T cP

Hp
(∇ − ∇a) + µ′ · ∂N

∂r
, (A1)

where s is the specific entropy, ∇ a = (∂ ln T /∂ ln P)s,N , cp =
(∂h/∂T ) p,N , µ are the chemical potentials and µ′ = µ +
T (∂s/∂ N)T,p. We also have

�h = cp�T + µ′ · �N. (A2)

Using relation (57), we obtain

�T

T
= λ

2Hp
(∇ − ∇a)

(
1 + β

χ

uλ

)−1

(A3)

where ∇ = d ln T /d ln p and H−1
p = −(d ln p/d r ). We now identify

the mixing length of MLT with λ, so that equation (A3) becomes
the MLT excess temperature equation. The density difference can
be written in terms of temperature and abundance differences if we
use the thermodynamical relation

� ln ρ = −δ� ln T + µ′′ · � ln N, (A4)

where δ = −(∂ ln ρ/∂ ln T ) p,N and µ′′ = (∂ ln ρ/∂ ln N) p,T . We
obtain the convective velocity u by substituting this expression into
equation (55) and using relations (57) and (A3)

u3 + u0u2 + u2
1[δ(−∇ + ∇a) + µ′′ · ∇N]u

+ u0u2
1µ

′′ · ∇N = 0, (A5)

where u0 = β(χ/λ), u1 = √
p/ρλ/2Hp , and ∇N = d ln N/d ln p.

Note that the dot product µ′′ ·∇N corresponds to the more familiar
φ∇µ where µ is mean molecular weight, φ = (∂ ln ρ/∂ ln µ) p,T

and ∇µ = d ln µ/d ln p. Solving this cubic equation for the real
positive roots (if they exist) gives the convective velocity, which in
turn allows us to compute all the � quantities:

� ln T = λ

2Hp

u

u + u0
(∇ − ∇a) (A6)

and

� ln N = λ

2Hp
∇N . (A7)

We now determine the number of solutions of the cubic (A5).

A1.2 Multiplicity of stationary states

This cubic may have three real roots or one real root and two complex
conjugate roots according to the sign of its discriminant (positive or
negative).

The number of real positive roots relies on the respective signs of
δ(∇ − ∇ a) − µ′′ ·∇N (Ledoux criterion) and µ′′ ·∇N (Rayleigh–
Taylor criterion). We use the rule of Descartes to obtain the number
of solutions.

(i) Ifµ′′ ·∇N < 0, there is one real positive root (Rayleigh–Taylor
instability).

(ii) If µ′′ ·∇N > 0 and δ(∇ − ∇ a) − µ′′ ·∇N < 0, there is no
real positive root.

(iii) If µ′′ ·∇N > 0 and δ(∇ − ∇ a) − µ′′ ·∇N > 0, there is no
positive root if the cubic discriminant is positive and there are two
positive roots otherwise (convective case).

In the convective case, when u � u0, the maximum convective
velocity becomes

u = u1

√
δ(∇ − ∇a) − µ′′ · ∇N . (A8)

A2 Stability

To analyse the stability of the stationary states we need the time-
dependent equations for the convective properties

λ

2

∂u

∂t
= −u2

1

2Hp

λ
(−δ� ln T + µ′′ · � ln N) − u2, (A9)

λ

2

∂� ln T

∂t
= u

λ

2Hp
(∇ − ∇a) − (u + u0)� ln T (A10)

and

λ

2

∂� ln N
∂t

= u

(
λ

2Hp
∇N − � ln N

)
. (A11)

In equation (A10) we assume that the evolution of the mean fluid is
slow compared to the convective time-scale so that time derivatives
of cp, µ′ and p can be neglected.

The linear stability of this system at a stationary point is deter-
mined by the eigenvalues of the matrix

λ

2




−2u δu2
1

2Hp

λ
−u2

1

2Hp

λ
µ′′

λ

2Hp
(∇ − ∇a) − � ln T −(u + u0) 0

λ

2Hp
∇N − � ln N 0 −u.I


(A12)
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where I is the identity N × N matrix (N is the total number of
species),∇N and � ln N are vertical N-component vectors, and µ′′

is a horizontal N-component vector. The system is stable when the
real part of all eigenvalues is negative. It is unstable otherwise.

A2.1 Radiative state (u = 0)

In this case the matrix (A12) reads

λ

2




0 δu2
1

2Hp

λ
−u2

1

2Hp

λ
µ′′

λ

2Hp
(∇ − ∇a) −u0 0

λ

2Hp
∇N 0 0




. (A13)

Its characteristic polynomial is PN(x) = −(−x)N−1 P(x) where P
is the cubic (A5). Hence, when there exists a convective state (a real
positive root of the cubic P) the radiative state must be unstable. If
there is no real positive root to P and the discriminant is positive, the
stability depends on whether the real part of the complex conjugate
roots are negative. The unstable case corresponds to semiconvection,

a state that is intrinsically time-dependent. In all the remaining cases
(negative discriminant and no real positive root) the radiative state
is stable.

A2.2 Convective state (u > 0)

In this case, the matrix (A12) reads

λ

2




−2u δu2
1

2Hp

λ
−u2

1

2Hp

λ
µ′′

− u0

u + u0

λ

2Hp
(∇ − ∇a) −(u0 + u) 0

0 0 −u.I


. (A14)

When there are two available stationary states with different ve-
locities u the state with the lower velocity is always unstable, and
the state with the higher velocity is always stable.

If u � u0 the eigenvalues are real negative {−2u, −u} and the
convective state is stable.
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