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A convective model consistent with chemistry
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Abstract. We present a convective model that guarantees self-consistency for the chemistry

and the energy budgets. We address its relevance to the thermally pulsing asymptotic giant

branch phase by using models computed with a mixing length prescription for convection.

We find that salt fingers occur at the base of the intershell convective region. We also find

that differential reactivity may play a role in the intershell region as well as at the base of the

convective envelope after H shell burning has ignited. However, fully self-consistent stellar

evolution computations still need to be undertaken and we provide hints to overcome a few

numerical problems generated by our convective model.

Key words. convection – AGB stars – thermal pulses – numerics

1. Motivation

The prelude to type Ia supernovae explo-
sions is a convective phase during which elec-
tron captures and emissions take place and
yield neutrino losses (Paczyński 1972). The
net amount of energy released and the change
in the electron fraction at the time of the
explosion have always been uncertain ow-
ing to the lack of a convective model self-
consistent within the energy and chemistry
budgets (Bruenn 1973; Couch & Arnett 1975;
Iben 1978, 1982; Barkat & Wheeler 1990;
Mochkovitch 1996; Stein, Barkat & Wheeler
1999; Bisnovatyi-Kogan 2001). Former at-
tempts (Eggleton 1983; Grossman et al. 1993;
Canuto 1999) to describe the interplay between
convection and chemistry have all left open the
question of energy conservation.

Since this problem is solved in the radia-
tive case we combine two radiative columns
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of fluid in order to get a self-consistent model
of convection (Lesaffre, Podsiadlowski & Tout
2004). We plan to implement this convective
model in a stellar evolution code to address
the ignition conditions of type Ia supernovae.
In the present work we assess whether this
model may yield new results during the ther-
mal pulses of asymptotic giant branch stars
(the TP-AGB phase).

Section 2 presents the two-streams model
compared with mixing-length theory (MLT) of
Böhm-Vitense (1958). Section 3 examines the
features that might be relevant during the TP-
AGB phase. Section 4 considers a few numeri-
cal difficulties related to the implementation of
this model. We summarise our results and con-
clude in Section 5.

2. The convective model - a
two-streams model

To derive our convective model we consid-
ered two radiative columns of fluid side by
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side moving with different velocities which ex-
change mass, momentum and energy. We write
down the equations of radiation hydrodynam-
ics in each stream and we assume a model for
the exchange terms.

The resulting formalism provides a frame-
work for convective models that guarantees
self-consistency for the chemistry and the
energy budget in the flows, allows time-
dependence, is non-local and accounts for the
interaction of the convective motions with the
global contraction or expansion of the star.
In the one-stream limit the formalism repro-
duces several existing convective models and
allows them to treat the chemistry in the flows.
Details of the method can be found in Lesaffre,
Podsiadlowski & Tout (2004).

2.1. Equations for the mean fluid

We present here one way of putting the equa-
tions for the evolution of the mean energy and
chemical composition which emphasise their
similarities1 :
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= R − ∂Fdiff
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− ∂Fconv

∂m
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where e, p, ρ and N are respectively the spe-
cific energy, pressure, mass density and com-
position vector (number per unit mass). The
net energy generation rate (nuclear burning and
neutrino losses) is ǫ. The rate of change of N
due to nuclear reactions is R. The radiative and
convective luminosities are Lrad and Lconv. The
flows of particles due to atomic diffusion and
convection are Fdiff and Fconv.

The two-streams model gives expressions
for Lconv and Fconv in terms of the convec-
tive velocity u (drift velocity between the two
streams) and the enthalpy and composition dif-
ferences between the two streams.

1 in particular we put the work term to zero

thereby assuming a fully dissipative process for the

momentum exchange between the two streams.

2.2. The minimal extension to MLT

To obtain the convective speed in MLT we as-
sume a stationary state in the sense that the
buoyancy acceleration is exactly balanced by
the dissipation of convective motions. We keep
this approximation in all the following.

The buoyancy of a fluid element is propor-
tional to its density excess compared with its
surroundings. We further assume that this den-
sity difference is proportional only to the tem-
perature difference. This yields the convective
speed

uMLT = u1

√

δ(∇ − ∇a), (3)

where u1 is a characteristic speed and δ =

−(
∂ ln ρ

∂ ln T
)p,N and ∇ and ∇a have have their usual

meaning.

But the density is also sensitive to the com-
position, especially in degenerate matter. The
corresponding convective velocity involves the
Ledoux criterion rather than the Schwarzschild
criterion. So

u = u1

√

δ(∇ − ∇a) − φ∇µ, (4)

where φ = (
∂ ln ρ

∂ ln µ
)p,T and ∇µ is the molecular

weight (µ) gradient. This introduces a depen-
dence of the convective speed on chemical gra-
dients.

The convective luminosity is then ex-
pressed in terms of the enthalpy excess. MLT
assumes that it is proportional to the tempera-
ture excess via the specific heat cp which yields
the convective luminosity

LMLT = 4πr2ρuMLTcp∆T, (5)

where ∆T is the temperature excess and r is the
distance to the centre of the star.

However, the enthalpy h also has a depen-
dence on composition. This yields the more
general expression

Lconv = 4πr2ρu(cp∆T + µ
′.∆N), (6)

where µ
′
= T ( ∂h

∂N
)T,p and ∆N is the vector

of composition excesses. This yields also a
dependence of the convective luminosity on
chemical variables.
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In either case the chemical flow is ex-
pressed as

Fdiff = 4πr2ρu∆N, (7)

where λ is the mixing length. The convective
mixing is hence a diffusion process.

Equations (1), (2), (4), (6) and (7) provide
the smallest extension of MLT which is con-
sistent with the energy and chemistry budgets.
We later refer to this model as MLTc.

2.3. Differential reactivity

In the one-stream limit of our convective model
the time evolution of the chemical excesses
obeys

λ

u

D∆N

Dt
= −λ∂N

∂r
− 2∆N +

λ

u
∆R. (8)

The last term illustrates the differential reac-
tivity of the fluid elements in the ascending
and descending streams. This term is present in
all former attempts to include chemical effects
in a convective model. Note that if this term
is significant it is likely to selectively mod-
ify the chemical mixing according to different
species. For example, only strongly reacting
species will be affected.

3. Relevance to the TP-AGB phase

We consider the 5 M⊙ models of Z=0.02 from
Stancliffe et al. (2004) at various phases of the
14th thermal pulse. For each of these models,
we extract every other point of the grid in or-
der to get more accurate chemical gradients.
We then compute a few variables of MLTc on
these models to assess the relevance of differ-
ent physical effects.

3.1. Schwarzschild versus Ledoux

We compared the Schwarzschild criterion to
the Ledoux criterion. A significant difference
was observed only at the He burning shell dur-
ing the thermal pulse. Salt fingers are expected
as is shown on Figure 1.

Ledoux

Schwarzschild

Salt fingers

Fig. 1. Schwarzschild (∇ − ∇a) and Ledoux
(∇ − ∇a − (φ/δ)∇µ) criteria for convection are

compared for a model near the peak of the 14th

thermal pulse of a 5 M⊙ model.

3.2. Differential reactivity

In order to assess the role of the differential
reactivity we compared the thermal diffusion
time scale over a pressure scale height, the
local convective turn-over time scale and the
chemical time scale, maximum of | ∂R j/N j

∂ ln T
| for

j species with mass fraction geater than 10%.
Figures 2 and 3 show these time scales for
the TP and the second half of the third dredge
up (TDUP) phase (after H shell burning has
reignited).

The thermal time scale is taken as a good
estimate for the typical time scale for the
evolution. Since the convective turn-over time
scale is always much shorter it is fair to take a
stationary model for convection.

But the chemical time scale is sometimes
shorter than the convective turn-over time
scale. This indicates situations where the dif-
ferential reactivity term is no longer negligible.
We point out two situations where this term
should be taken into account. They are

– at the base of the convective envelope dur-
ing TP and in the second half of TDUP and

– in he intershell convective zone during TP.

The first case is interesting because it might
give rise to selective mixing in the region
where the 13C pocket is thought to be formed
even though the process happens only after H-
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         required
Differential reactivity

convection

thermal diffusion
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Fig. 2. Three characteristic time scales for ther-
mal diffusion, convection and chemistry are
compared for the same model as Figure 1.

         required 
Differential reactivity

thermal diffusion

chemistry

convection

Fig. 3. Three characteristic time scales for ther-
mal diffusion, convection and chemistry are
compared for a model near the end of the
TDUP phase after the 14th pulse.

shell burning has reignited. However numeri-
cal calculations need to be undertaken with a
refined stellar evolution code to validate the ex-
tent of this effect.

4. Numerical difficulties

MLTc is formally very close to MLT but
in practice it generates plenty of numerical
difficulties. . .

4.1. Energy equation

When writing down the energy equation (1)
we have the choice of using de + pd(1/ρ) or
ds + µ.dN where s is the specific entropy and
µ is the vector of chemical potentials. Even
though it is easier to implement, the former
choice is often numerically ill-determined be-
cause the sum of two terms nearly cancels. The
entropy form of the equation is hence a wiser
choice.

4.2. Chemical gradients

The chemical profile can be very flat in well
mixed convective regions. In this case it is a
bad idea to compute the gradients by a differ-
ence scheme which introduces huge roundoff
errors. In the case of MLTc these errors are
propagated to the convective velocity. Hence a
mixing and a numerical instability is triggered.
We suggest the use of F = Fdiff + Fconv as an
additional variable in exactly the same way as
L = Lrad + Lconv is used in addition to T in
standard stellar evolution codes. This allows us
to compute accurately the mixing even in well
mixed regions. It is crucial for degenerate mat-
ter where even small gradients affect the con-
vective velocity.

4.3. Resolution at convective
boundaries

To get smooth variations of the total flow F the
condition

∆r ≪
√

D∆t, (9)

where ∆r is the grid spacing, ∆t is the time step
and D is the atomic diffusion coefficient, needs
to be satisfied near the convective boundary.
This implies a lower bound for the time step.

4.4. Back reaction

The back reaction of the chemical gradients on
the convective velocity, and hence the chemi-
cal mixing, gives birth to a pathological case
where Newton-Raphson is not able to con-
verge. We are currently trying to fix this by us-
ing the chemical gradients at the previous time
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step in the expression for the convective speed
even though it damages the self-consistency of
the solution.

5. Summary and conclusion

Using a two-streams configuration we have
produced a convective model self-consistent
within the energy and chemistry budget. We
note that MLT is formally close to consistency
with chemistry because only the chemical de-
pendence of the convective velocity and lumi-
nosity need be introduced to get MLTc.

In the TP-AGB phase we expect a signif-
icant change to the convective velocity only
during TPs at the He burning shell where salt
fingers are expected. Differential reactivity is
likely to play a role in the intershell convec-
tive region and at the base of the convective
envelope and during TPs and the second half
of TDUP. The latter case is exciting because it
corresponds to where we think the 13C pocket
is formed.

However, we need to overcome quite a few
numerical difficulties before we are able to im-
plement MLTc in a stellar evolution code and
assess the true impact of this model on various
types of stars.
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Paczyński B., 1972, ApJL, 11, 53
Stancliffe R. J., Tout C. A., Pols O. R 2004,

MNRAS, 352, 984
Stein J, Barkat Z., Wheeler J. C., 1999, ApJ,

523, 381


